The unsuitability of using classic mutual information measure as a performance measure for image fusion is discussed. Analytical proof that classic mutual information cannot be considered a measure for image fusion performance is provided.
High performance for face recognition systems occurs in controlled environments and degrades with variations in illumination, facial expression, and pose. Efforts have been made to explore alternate face modalities such as infrared (IR) and 3-D for face recognition. Studies also demonstrate that fusion of multiple face modalities improve performance as compared with singlemodal face recognition. This paper categorizes these algorithms into singlemodal and multimodal face recognition and evaluates methods within each category via detailed descriptions of representative work and summarizations in tables. Advantages and disadvantages of each modality for face recognition are analyzed. In addition, face databases and system evaluations are also covered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.