n this paper, a unique combination among probabilistic roadmap, ant colony optimization, and third order B-spline curve has been proposed to solve path-planning problem in complex and very complex environments. This proposed method can be divided into three stages. First stage is to construct a random map depending on the environment complexity using probabilistic roadmap algorithm. This could be done by sampling N nodes randomly in complex and very complex static environments, then connecting these nodes together according to some criteria or conditions. The constructed roadmap contains huge number of possible random paths that may connect the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Ant colony optimization is selected to find or to search the best path between start and goal points. Finally, the third stage uses B-spline curve to smooth and reduce total length of the found path in the previous stage where path’s length has been reduced by 1% in first environment and by 15% in second environment. The results of the proposed approach ensure feasible path between start and goal points in complex and very complex environment. In addition, the path is guaranteed to be shortest, smooth, continues and safe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.