Due to the varied needs of persons who have lost a lower limb in their everyday lives, ankle-foot prosthetic technology is continually evolving. Numerous prosthetic ankles have been created in recent years to restore the ankle function of lower limb amputees. Most ankle foot prostheses, on the other hand, are passive, such as the solid ankle cushion heel and the energy storage and release foot (ESAR). The solid ankle foot can only provide steady vertical support during ambulation; however, the ESAR foot can store energy and gradually release it throughout human walking periods, hence increasing the walking pace of amputees. The aim of this work is to describe the design and manufacture of an actuated ankle-foot prosthesis. The main benefit of powered ankles is that they are capable of mimicking natural stride, particularly in steep or uneven terrain conditions. The primary objective is to establish two degrees of freedom of ankle rotation in two planes, plantar flexion and dorsiflexion in the sagittal plane, besides inversion and eversion in the frontal plane. As software can improve the gait stability, an automatic modifiable transmission arrangement was prepared for delivering the current design motions in the sagittal plane based on empirical collected biomechanical data related to passive prosthetic normal gait circumstances. However, the ankle rolling in the frontal plane was guided mechanically by means of mono leaf spring. The majority of the ankle mechanical components are made of 7075-T6 aluminum alloy and are integrated onto ESAR carbon fiber laminated foot. For a unilateral above-knee amputee, the ankle function at self-selected walking was assessed, achieving maximum results of 10° inversion, 10° eversion, 12° plantar flexion and 18° dorsiflexion ankle angles. Also, the patient gait experiment in a normal cadence showed an improvement in plantar flexion behavior for the powered ankle in contrast with the passive ankle
There are millions of persons in this world have been suffered from land mines or other accidental events which have caused amputations. The human body feet provide stability and balance when standing and moving. Amputation of a foot highly decrease the amputee’s ability to practice common activities such as walking. The main target of a prostheses of any kind is to improve or return function to a physically disabled person. Although, the rapid developing of alternative prostheses technology, unfortunately, it is still a far from inquiring quite functional prosthetic limb replacement. The present study was focused on design and manufacturing of a two degree of freedom ankle rotation, plantar flexion- dorsiflexion in sagittal plane and inversion - eversion in frontal plain so as to mimic the normal human gait and also to reduce the pain and stress in the residual limb. Most ankle parts were formed from aluminum alloy and assembled to a carbon fiber foot laminated foot. The gait analysis was performed by the amputee user case study for both his prosthetic foot and the designed foot at the same optional ground surface conditions. The user foot angles responses were: eversion 2.60, inversion 2.60, plantar 8.70, dorsi 5.30, in contrast, the designed foot angles were: eversion 9.50, inversion 9.80, plantar 10.20, dorsi 10.40. The achieved designed maximum rolling in frontal plane was 100 inversion- eversion angle and the maximum rolling in sagittal plane were 120, 180 for plantar and dorsi flexion angle respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.