Bidirectional communication infrastructure of smart systems, such as, smart grids, are vulnerable to network attacks like Distributed Denial of Services (DDoS) and can be a major concern in the present competitive market. In DDoS attack, multiple compromised nodes in a communication network flood connection request, bogus data packets or incoming messages to targets like database servers, resulting in denial of services for legitimate users. Recently, machine learning based techniques have been explored by researchers to secure the network from DDoS attacks. Under different attack scenarios on a system, measurements can be observed either in an online manner or batch mode and can be used to build predictive learning systems. In this paper, a hybrid deep learning model is developed for detecting replay and DDoS attacks in a real-life smart city platform. The performance of the proposed hybrid model is evaluated using real life smart city datasets (environmental, smart river and smart soil), where DDoS and replay attacks were simulated. The proposed model reported high accuracy rates: 98.37% for the environmental dataset, 98.13% for the smart river dataset, and 99.51% for the smart soil dataset. The results demonstrated an improved performance of the proposed model over other machine learning and deep learning models from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.