Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Cationic polythiophenes have been shown to be potent antimicrobial compounds due to their ability to absorb visible light and sensitize the production of reactive oxygen species (ROS) as well as their ability to selectively associate with and damage negatively charged cell envelopes. This study demonstrates the ability of differentially sized imidazolium- and tertiary amine-functionalized poly(3-hexylthiophene) (P3HT) to inactivate Gram-negative Escherichia coli and Gram-positive Bacillus atrophaeus under photolysis and dark conditions. Flow cytometry viability assays are used to quantify cell death. Each compound shows high levels of killing at both 1 and 10 μg mL polymer concentrations for each microbial species after photoactivation as well as high levels of dark inactivation in many cases. Tertiary amine-functionalized P3HT is shown to have different killing patterns, shown by transmission electron microscopy, compared to the imidazolium-functionalized derivatives.
Summary A phylogenetic perspective of community assembly can reveal new insights into how variation within dominant species interacts with the local species pool to influence the structure of restored plant communities. Many studies have examined the effect of dominant species in structuring plant communities, but few have investigated their effect on phylogenetic diversity (PD). We established grassland in a post‐agricultural field using two population sources (cultivars and local ecotypes) of three dominant grasses (Sorghastrum nutans, Andropogon gerardii and Schizachyrium scoparium) with three unique pools of subordinate species that varied in PD but not taxonomic or life‐form diversity. We tested the effect of the population source treatment on two metrics of community PD (net relatedness index [NRI] and nearest taxon index [NTI]) during the first 4 years of restoration. The NRI measures the overall pairwise phylogenetic distance between all pairs of taxa in a community. By contrast, NTI measures the pairwise distance between closely related taxa in a community. Population sources had a transitory effect on community phylogenetic structure over time. Local ecotypes decreased the abundance of closely related eudicots, monocots (low +NRI and +NTI values) and volunteer species (−NTI) more than cultivars. However, population sources did not affect ecologically conservative species (i.e. species with intermediate‐to‐poor ecological tolerance and a high degree of fidelity to prairie habitats). Thus, cultivars might have a positive effect on community phylogenetic diversity more than local ecotypes by decreasing the abundance of a phylogenetically diverse community of less closely related volunteer species. Differences in PD of seed mixes were maintained in the community of high‐fidelity species, but did not affect PD of the unsown (volunteer) species in the assembling community. Synthesis and applications. This is the first experiment to show consequences of using different seed sources on phylogenetic diversity (PD) in grassland restoration. Phylogenetics can reveal the effects of population sources on the abundance of volunteer species not evident through traditional analyses of species diversity. The PD of seed mixes or establishing communities, or other assessments of phylogenetic relationships, by restoration practitioners is recommended as a metric to allow consequences of the evolutionary patterns among species to be included in conservation planning. Increased accessibility of phylogenetic tools will allow the application of PD in restoration monitoring.
. 2018. Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere 9(3):e02164. 10. 1002/ecs2.2164 Abstract. Ecologically important functional traits and phylogenetic relatedness may provide mechanistic insight into biotic filters influencing community assembly. To assess this, we examined the relationship between functional diversity (FD, functional trait relatedness) and phylogenetic diversity (PD, evolutionary relatedness) during grassland restoration. Temporal changes in FD and PD were used to examine the effect of two biotic filters during community assembly: intraspecific variation in dominant species (different population sources) and interspecific variation among subordinate species (phylogenetically distinct species pools). The experimental grassland restoration contained whole plots sown with either cultivars or local ecotypes of three dominant grasses (Sorghastrum nutans, Andropogon gerardii, and Schizachyrium scoparium). Each whole plot contained subplots sown with three phylogenetically distinct pools of subordinate species. Cover of all species was measured in permanent sampling areas for ten years, and 10 functional traits were measured for 88 species, allowing calculation of PD and FD, respectively. Overall, the communities establishing with local ecotypes of the dominant grasses were functionally more dissimilar than when established with cultivars, particularly among the Asteraceae, suggesting competitive exclusion of functionally dissimilar species by cultivars. This result was opposite to our prediction that cultivars through limiting similarity would exclude more similar species more so than would local ecotypes. The effect of the dominant grass population source was contingent upon interactions with species pools. A supplemental propagule addition of functionally dissimilar species four years since initial sowing increased FD, but this effect varied among species pools. A lack of relationship between FD and PD in this system indicated that measuring PD alone without inclusion of functional traits may miss additional factors affecting species coexistence. In addition, the variation in FD between population sources and among species pools indicated that the measured traits were more sensitive to these factors than to their phylogenetic relationships. This analysis of long-term data from a field experiment showed new consequences of using different seed sources and species pools (as biotic filters), and supplemental seeding on PD and FD of restored grassland. Quantifying relevant functional traits in a phylogenetic framework could help identify plant population sources that enhance coexistence of desirable species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.