Background
This paper aims to move the debate forward regarding the potential for artificial intelligence (AI) and autonomous robotic surgery with a particular focus on ethics, regulation and legal aspects (such as civil law, international law, tort law, liability, medical malpractice, privacy and product/device legislation, among other aspects).
Methods
We conducted an intensive literature search on current or emerging AI and autonomous technologies (eg, vehicles), military and medical technologies (eg, surgical robots), relevant frameworks and standards, cyber security/safety‐ and legal‐systems worldwide. We provide a discussion on unique challenges for robotic surgery faced by proposals made for AI more generally (eg, Explainable AI) and machine learning more specifically (eg, black box), as well as recommendations for developing and improving relevant frameworks or standards.
Conclusion
We classify responsibility into the following: (1) Accountability; (2) Liability; and (3) Culpability. All three aspects were addressed when discussing responsibility for AI and autonomous surgical robots, be these civil or military patients (however, these aspects may require revision in cases where robots become citizens). The component which produces the least clarity is Culpability, since it is unthinkable in the current state of technology. We envision that in the near future a surgical robot can learn and perform routine operative tasks that can then be supervised by a human surgeon. This represents a surgical parallel to autonomously driven vehicles. Here a human remains in the ‘driving seat’ as a ‘doctor‐in‐the‐loop’ thereby safeguarding patients undergoing operations that are supported by surgical machines with autonomous capabilities.
Gorlin syndrome (Naevoid Basal Cell Carcinoma Syndrome) is a rare autosomal dominant syndrome caused by mutations in the PTCH gene with a birth incidence of approximately 1 in 19,000. Patients develop multiple basal cell carcinomas of the skin frequently in early life and also have a predisposition to additional malignancies such as medulloblastoma. Gorlin Syndrome patients also have developmental defects such as bifid ribs and other complications such as jaw keratocysts. We studied the incidence and frequency of basal cell carcinomas in 202 Gorlin syndrome patients from 62 families and compared this to their gender and mutation type. Our data suggests that the incidence of basal cell carcinomas is equal between males and females and the mutation type cannot be used to predict disease burden.
We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.