An accurate and efficient automatic brain tumor segmentation algorithm is important for clinical practice. In recent years, there has been much interest in automatic segmentation algorithms that use convolutional neural networks. In this paper, we propose a novel hierarchical multi-scale segmentation network (HMNet), which contains a high-resolution branch and parallel multi-resolution branches. The high-resolution branch can keep track of the brain tumor’s spatial details, and the multi-resolution feature exchange and fusion allow the network’s receptive fields to adapt to brain tumors of different shapes and sizes. In particular, to overcome the large computational overhead caused by expensive 3D convolution, we propose a lightweight conditional channel weighting block to reduce GPU memory and improve the efficiency of HMNet. We also propose a lightweight multi-resolution feature fusion (LMRF) module to further reduce model complexity and reduce the redundancy of the feature maps. We run tests on the BraTS 2020 dataset to determine how well the proposed network would work. The dice similarity coefficients of HMNet for ET, WT, and TC are 0.781, 0.901, and 0.823, respectively. Many comparative experiments on the BraTS 2020 dataset and other two datasets show that our proposed HMNet has achieved satisfactory performance compared with the SOTA approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.