We present a simple technique for simultaneous determination of thickness and refractive index of plane-parallel samples in the terahertz radiation domain. The technique uses time-of-flight measurements of the terahertz pulse. It has been employed on nine different polymers and semiconductor materials, which are transparent for terahertz frequencies. Our results of thickness measurement are in good agreement with micrometer reading. The accuracy in the determination of refractive index is on the order of two decimal points.
Gallium nitride (GaN)/porous silicon (PSi) film was prepared using a pulsed laser deposition method and 1064 nm Nd: YAG laser for optoelectronic applications and a series of Psi substrates were fabricated using a photoelectrochemical etching method assisted by laser at different etching times for 2.5-15 min at 2.5 min intervals. X-ray diffraction, room-temperature photoluminescence, atomic force microscopy and field emission scanning electron microscopy images, and electrical characteristics in the prepared GaN on the Psi film were investigated. The optimum Psi substrate was obtained under the following conditions: 10 min, 10 mA/cm 2 , and 24% hydrofluoric acid. The substrate exhibited two highly cubic crystalline structures at (200) and (400) orientations and yellow visible band photoluminescence, and homogeneous pores formed over the entire surface. The pores had steep oval shapes and were accompanied by small dark pores that appeared topographically and morphologically. The GaN/Psi film fabricated through PLD exhibited a high and hexagonal crystallographic texture in the (002) plane. Spectroscopic properties results revealed that the photoluminescence emission of the deposited nano-GaN films was in the ultraviolet band (374 nm) related to GaN material and in the near-infrared band (730 nm) related to the Psi substrate. The topographical and morphological results of the GaN films confirmed that the deposited film contained spherical grains with an average diameter of 51.8 nm and surface roughness of 4.8 nm. The GaN/Psi surface showed a cauliflower-like morphology, and the built-in voltage decreased from 3.4 to 2.7 eV after deposition. The fabricated GaN/Psi film exhibited good electrical characteristics.
In this work, a temperature-dependent analytical model was modified to predict the thermal effects of diode laser double–end-pumped cylindrical laser rod under Gaussian pump beam distribution. Heat load and temperature distribution were analyzed using the Kirchhoff integral transform method. Results show that a maximum temperature difference of approximately 69.61 K was obtained on each side face of the laser rod at a maximum power of 40 W (equally divided on each face). The total thermal focal length of approximately 34.64 mm was calculated under the Gaussian pumping profile. The finite element method code incorporated with well-verified software was used to numerically verify the obtained results, where the analytical and numerical results are highly matched. The results reveal that the total thermal focal length produced in a double–end-pumped geometry is two times less than that obtained from a single-end-pumped geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.