Concrete is brittle; hence, it is incredibly likely that concrete buildings may fail in both local and global ways under dynamic and impulsive stresses. An extensive review investigation was carried out to examine reinforced concrete (RC) slab behavior under low-velocity impact loading. Significant past research studies that dealt with experimental and numerical simulations and analytical modeling of the RC slabs under impact loading have been presented in this work. As a result, numerous attempts to define failure behavior and to assess concrete structures’ vulnerability to lateral impact loads have been made in the literature. Based on analytical, numerical, and experimental studies carried out in previous research, this article thoroughly reviewed the current state of the art regarding the responses and failure behaviors of various types of concrete structures and members subjected to low-velocity impact loading. The effects of different structural and load-related factors were examined regarding the impact strength and failure behavior of reinforced concrete slabs reinforced with various types of strengthening procedures and exposed to low-velocity impact loads. The reviews suggested that advanced composite materials, shear reinforcement, and hybrid techniques are promising for effectively strengthening concrete structures.
The use of cement is expected to increase over the years as the infrastructure continues to develop, and the needs to repair or rehabilitate an old and deteriorated building are necessary. However, many investigations have been conducted to establish promising polymer concrete applications in the last few decades. Meanwhile, using concrete in the construction industry has led to environmental issues. It is because relying on cement production in concrete will contribute to about 7% of the world’s carbon dioxide emissions. Therefore, polymer concrete was introduced in this study to minimise the use of cement in the industry. This research investigated the influence of different amounts of polypropylene (PP) fibre content on polymer concrete (PC) properties by determining the compressive strength, flexural strength and indirect tensile strength. Furthermore, the results of PC failure characteristics have been discussed. The polymer concrete specimens in this study have been cast into cylinders and prismatic specimens using PVC pipe and plywood formwork to determine the compressive strength, splitting tensile strength and flexural strength. By reinforcing PP fibre in the polymer concrete with a specific percentage of fibre reinforced, the overall strength of the polymer concrete was improved. Based on the compressive, splitting tensile, and flexural test results, it has been hypothesised that the 0.16% PP fibre will considerably improve polymer concrete. Additionally, PP fibre maintains a moisture content of less than 0.5% in the aggregates, resulting in a significant enhancement in the mechanical properties of polymer concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.