Medical image analysis is a very popular research area these days in which digital images are analyzed for the diagnosis and screening of different medical problems. Diabetic retinopathy (DR) is an eye disease caused by the increase of insulin in blood and may cause blindness. An automated system for early detection of DR can save a patient's vision and can also help the ophthalmologists in screening of DR. The background or nonproliferative DR contains four types of lesions, i.e., microaneurysms, hemorrhages, hard exudates, and soft exudates. This paper presents a method for detection and classification of exudates in colored retinal images. We present a novel technique that uses filter banks to extract the candidate regions for possible exudates. It eliminates the spurious exudate regions by removing the optic disc region. Then it applies a Bayesian classifier as a combination of Gaussian functions to detect exudate and nonexudate regions. The proposed system is evaluated and tested on publicly available retinal image databases using performance parameters such as sensitivity, specificity, and accuracy. We further compare our system with already proposed and published methods to show the validity of the proposed system.
Glaucoma is a chronic and irreversible neuro-degenerative disease in which the neuro-retinal nerve that connects the eye to the brain (optic nerve) is progressively damaged and patients suffer from vision loss and blindness. The timely detection and treatment of glaucoma is very crucial to save patient's vision. Computer aided diagnostic systems are used for automated detection of glaucoma that calculate cup to disc ratio from colored retinal images. In this article, we present a novel method for early and accurate detection of glaucoma. The proposed system consists of preprocessing, optic disc segmentation, extraction of features from optic disc region of interest and classification for detection of glaucoma. The main novelty of the proposed method lies in the formation of a feature vector which consists of spatial and spectral features along with cup to disc ratio, rim to disc ratio and modeling of a novel mediods based classier for accurate detection of glaucoma. The performance of the proposed system is tested using publicly available fundus image databases along with one locally gathered database. Experimental results using a variety of publicly available and local databases demonstrate the superiority of the proposed approach as compared to the competitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.