Purpose: COVID-19 pandemic continues to hit countries one after the other and has dramatically affected the health and well-being of the world's population. With the daily increase in the number of people with this disease, the impressive speed of spread and the delay in the results of PCR analysis, it may cause the disease to spread more broadly. Therefore it is necessary to consider finding alternative methods of detection and diagnosis COVID-19 to prohibit the spread of the disease among people. Convolutional Neural Network (CNN) automated detection systems have shown auspicious results in detecting patients with COVID-19 through radiography; thus, we suggest them as an alternative option to diagnose COVID-19.Method: In this study, an early screening model based on the enhancement of classical Visual Geometry Group Network (VGG) with Convolutional Covid Block (CCBlock) was proposed to detect and distinguish COVID-19 from Pneumonia, and healthy people using chest X-ray radiographs. The data set used for model testing is the x-ray images available on public platforms, which consist of 1,828 x-ray images, including 310 images for confirmed COVID-19 patients, 864 images for pneumonia patients, and 654 images for healthy people.Results: The experiment result of the dataset showed that the added enhancements to the classical VGG network with X-ray imaging provide the highest detection performance and overall accuracy of 98.52% for two classes and 95.34% accuracy for three classes.Conclusions: Considering the achievement results obtained, it was found that utilizing the enhanced VGG deep neural network helps radiologists automatically diagnose COVID-19 in X-ray images.
Propose Troubling countries one after another, the COVID-19 pandemic has dramatically affected the health and well-being of the world’s population. The disease may continue to persist more extensively due to the increasing number of new cases daily, the rapid spread of the virus, and delay in the PCR analysis results. Therefore, it is necessary to consider developing assistive methods for detecting and diagnosing the COVID-19 to eradicate the spread of the novel coronavirus among people. Based on convolutional neural networks (CNNs), automated detection systems have shown promising results of diagnosing patients with the COVID-19 through radiography; thus, they are introduced as a workable solution to the COVID-19 diagnosis. Materials and methods Based on the enhancement of the classical visual geometry group (VGG) network with the convolutional COVID block ( CCBlock ), an efficient screening model was proposed in this study to diagnose and distinguish patients with the COVID-19 from those with pneumonia and the healthy people through radiography. The model testing dataset included 1828 X-ray images available on public platforms. Three hundred and ten images were showing confirmed COVID-19 cases, 864 images indicating pneumonia cases, and 654 images showing healthy people. Results According to the test results, enhancing the classical VGG network with radiography provided the highest diagnosis performance and overall accuracy of 98.52% for two classes as well as accuracy of 95.34% for three classes. Conclusions According to the results, using the enhanced VGG deep neural network can help radiologists automatically diagnose the COVID-19 through radiography.
Propose: Troubling countries one after another, the COVID-19 pandemic has dramatically affected the health and well-being of the world's population. The disease may continue to persist more extensively due to the increasing number of new cases daily, the rapid spread of the virus, and delay in the PCR analysis results. Therefore, it is necessary to consider developing assistive methods for detecting and diagnosing the COVID-19 to eradicate the spread of the novel coronavirus among people. Based on convolutional neural networks (CNNs), automated detection systems have shown promising results of diagnosing patients with the COVID-19 through radiography; thus, they are introduced as a workable solution to the COVID-19 diagnosis.Materials and Methods: Based on the enhancement of the classical visual geometry group (VGG) network with the convolutional COVID block (CCBlock), an efficient screening model was proposed in this study to diagnose and distinguish patients with the COVID-19 from those with pneumonia and the healthy people through radiography. The model testing dataset included 1,828 x-ray images available on public platforms. 310 images were showing confirmed COVID-19 cases, 864 images indicating pneumonia cases, and 654 images showing healthy people.Results: According to the test results, enhancing the classical VGG network with radiography provided the highest diagnosis performance and overall accuracy of 98.52% for two classes as well as accuracy of 95.34% for three classes.Conclusions: According to the results, using the enhanced VGG deep neural network can help radiologists automatically diagnose the COVID-19 through radiography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.