The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory turbulence statistics of the velocity gradient tensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.