The current study is aimed to explore the specific genes which are responsible for the manifestation of Immunoglobulin A nephropathy (IgAN). Gene expression profiles GSE37460, GSE93798 and GSE104948 were analyzed using biological informatics methods to identify differentially expressed genes (DEGs) in IgAN glomeruli samples which were then compared to normal control samples. Subsequently, the DEGs were overlapped to explore genes with significant expression in at least two profiles. Finally, the enrichment analysis was conducted and the protein-protein interaction (PPI) network was constructed for the overlapping DEGs. A total of 28 genes were up-regulated and 10 genes were down-regulated. The up-regulated genes including CD44 and FN1 were chiefly involved in extracellular matrix receptors interaction pathway. In addition, CX3CR1 and CCL4 were associated with chemokine signaling pathway. ITGB2, PTPRC, FN1, and FCER1G were hub genes with a high degree of interaction in the PPI network. Therefore, this study identified many significant genes associated with extracellular matrix expansion and inflammatory mechanism which may be the novel biomarker and target candidates in IgAN.
Background Control efforts in Zanzibar reduced the burden of malaria substantially from 2000 to 2015, but re-emergence of falciparum malaria has been observed lately. This study evaluated the prevalence of malaria and performance of routine diagnostic tests among hospitalized fever patients in a 1.5 years period in 2015 and 2016. Methods From March 2015 to October 2016, paediatric and adult patients hospitalized with acute undifferentiated fever at Mnazi Mmoja Hospital, Zanzibar were included. The malaria prevalence, and performance of rapid diagnostic test (RDT) and microscopy, were assessed using polymerase chain reaction (PCR) as gold standard. Results The malaria prevalence was 9% (63/731). Children under 5 years old had lower malaria prevalence (5%, 14/260) than older children (15%, 20/131, p = 0.001) and persons aged 16 to 30 years (13%, 15/119, p = 0.02), but not different from persons over 30 years old (6%, 14/217, p = 0.7). All cases had Plasmodium falciparum infection, except for one case of Plasmodium ovale. Ten malaria patients had no history of visiting mainland Tanzania. The RDT had a sensitivity of 64% (36/56) and a specificity of 98% (561/575), and microscopy had a sensitivity of 50% (18/36) and a specificity of 99% (251/254), compared to PCR. The malaria parasitaemia was lower in patients with false negative results on RDT (median 7 × 103 copies/µL, interquartile range [IQR] 2 × 103 – 8 × 104, p = 0.002) and microscopy (median 9 × 103 copies/µL, IQR 8 × 102 – 7 × 104, p = 0.006) compared to those with true positive RDT (median 2 × 105 copies/µL, IQR 3 × 104 – 5 × 105) and microscopy (median 2 × 105 copies/µL, IQR 6 × 104 – 5 × 105). Conclusions The study emphasizes that malaria was a frequent cause of febrile illness in hospitalized patients in Zanzibar in the years 2015-2016, particularly among school age children and young adults. We found evidence of autochthonous malaria transmission in Zanzibar. Compared to PCR, both RDT and microscopy had low sensitivity, and false negative results were associated with low parasitaemia. While low parasitaemia identified only by PCR in a semi-immune individual could be coincidental and without clinical relevance, clinicians should be aware of the risk of false negative results on routine tests.
Background: Control efforts in Zanzibar reduced the burden of malaria substantially from 2000 to 2015, but re-emergence of falciparum malaria has been observed the last years. This study evaluated the prevalence of malaria and performance of routine diagnostic tests among hospitalized fever patients in a 1.5 years period in 2015 and 2016. Methods: From March 2015 to October 2016, pediatric and adult patients hospitalized with acute undifferentiated fever at Mnazi Mmoja Hospital, Zanzibar were included. The malaria prevalence was assessed by polymerase chain reaction (PCR), rapid diagnostic test (RDT) and routine microscopy. Results: Malaria prevalence was 8% (67/820). All cases identified by PCR had Plasmodium falciparum infection, except for one P. ovale. Compared to PCR, the RDT had sensitivity of 64% (36/56), specificity 98% (561/575), positive predictive value (PPV) 72% (36/50) and negative predictive value (NPV) 97% (561/581). Microscopy had a sensitivity of 50% (18/36), specificity 99% (251/254), PPV 86% (18/21) and NPV 93% (251/269) compared to PCR. Conclusions: A high malaria prevalence was identified compared to previous studies in Zanzibar. Microscopy showed higher PPV than RDT in this study. Both RDT and microscopy had low sensitivity compared to PCR. However, low parasitemia identified only by PCR in a semi-immune individual could be coincidental and may not be the cause of the presenting symptoms. To achieve malaria elimination in Zanzibar, PCR-based surveillance is suitable to guide control and elimination efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.