This is the author accepted manuscript (AAM). The final published version (version of record) is available online via AAAS at http://immunology.sciencemag.org/content/2/15/eaal5296. Please refer to any applicable terms of use of the publisher. University of Bristol -Explore Bristol Research General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. KIR2DS2, an activating natural killer cell receptor recognizes highly conserved peptides derived from the RNA helicases of pathogenic flaviviruses. AbstractKiller cell immunoglobulin-like receptors (KIR) are rapidly evolving species-specific natural killer cell receptors associated with protection against multiple different human viral infections. We report that the activating receptor KIR2DS2 directly recognizes viral peptides derived from conserved regions of flaviviral superfamily 2 RNA helicases in the context of MHC class I. The peptide LNPSVAATL, from the HCV helicase, binds HLA-C*0102 leading to NK cell activation through engagement of KIR2DS2. Similarly, HLA-C*0102 presents highly conserved peptides from the helicase motif 1b region of related flaviviruses, including dengue, Zika, yellow fever and Japanese encephalitis viruses, to KIR2DS2. These flaviviral peptides all contain an "MCHAT" motif, which is present in 61 out of 63 flaviviruses.LNPSVAATL is also highly conserved across HCV genotypes and mutation of this epitope is poorly tolerated by HCV. KIR2DS2 recognizes endogenously presented helicase peptides and KIR2DS2 is sufficient to inhibit HCV and dengue virus replication in the context of HLA-C*0102. Targeting short, but highly conserved, viral peptides provide non-rearranging innate immune receptors with an efficient mechanism to recognize multiple, highly variable pathogenic RNA viruses.4
Funding information Bristol-Myers Squibb; EASL SummaryThe optimal duration of treatment with nucleos(t)ide analogues (NAs) for patients with HBeAg-negative chronic hepatitis B (CHB) is unknown. The aim of this study was to identify an immune signature associated with off-treatment remission to NA therapy. We performed microarray analysis of peripheral blood mononuclear cell (PBMCs) from six patients with chronic hepatitis B who stopped NA therapy (three with off-treatment remission, three with relapse) and five patients with chronic HBV infection (previously termed 'inactive carriers') served as controls. Results were validated using qRT-PCR on a second group of 21 individuals (17 patients who stopped treatment and four controls). PBMCs from 38 patients on long-term NA treatment were analysed for potential to stop treatment. Microarray analysis indicated that patients with off-treatment remission segregated as a distinct out-group. Twenty-one genes were selected for subsequent validation. Ten of these were expressed at significantly lower levels in the patients with off-treatment remission compared to the patients with relapse and predicted remission with AUC of 0.78-0.92. IFNγ, IL-8, FASLG and CCL4 were the most significant by logistic regression. Twelve (31.6%) of 38 patients on long-term NA therapy had expression levels of all these four genes below cut-off values and hence were candidates for stopping treatment. Our data suggest that patients with HBeAg-negative CHB who remain in off-treatment remission 3 years after NA cessation have a distinct immune signature and that PBMC RNA levels of IFNγ, IL-8, FASLG and CCL4 may serve as potential biomarkers for stopping NA therapy.
Productive engagement of MHC Class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell immunoglobulin-like receptors (KIR) can antagonize the inhibition mediated by high affinity peptide:MHC complexes and cause NK cell activation. We show that low affinity peptide:MHC complexes stall inhibitory signalling at the step of SHP-1 recruitment and do not go on to form the KIR microclusters induced by high affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signalling. Furthermore the low affinity peptide:MHC complexes prevented the formation of KIR microclusters by high affinity peptide:MHC. Thus peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.