Background: Sphingolipids are myelin components and inflammatory signaling intermediates. Sphingolipid metabolism may be altered in people with multiple sclerosis (PwMS), but existing studies are limited by small sample sizes. Objectives: To compare the levels of serum ceramides between PwMS and healthy controls (HCs) and to determine whether ceramide levels correlate with disability status, as well as optical coherence tomography (OCT)-derived rates of retinal layer atrophy. Methods: We performed targeted lipidomics analyses for 45 ceramides in PwMS ( n = 251) and HCs ( n = 68). For a subset of PwMS, baseline and 5-year Expanded Disability Status Scale (EDSS) assessments ( n = 185), or baseline and serial spectral-domain OCT ( n = 180) were assessed. Results: Several ceramides, including hexosylceramides, lactosylceramides, and dihydroceramides, were altered in PwMS compared with HCs. Higher levels of Cer16:0 were associated with higher odds of EDSS worsening at 5 years in univariable (odds ratio (OR) = 3.84, 95% confidence interval (CI) = 1.41–10.43) and multivariable analyses accounting for age, sex, and race (OR = 2.97, 95% CI = 1.03–8.59). Each 1 ng/mL higher concentration of Hex-Cer22:0 and DH-HexCer22:0 was associated with accelerated rates (μm/year) of ganglion cell + inner plexiform layer (–0.138 ± 0.053, p = 0.01; –0.158 ± 0.053, p = 0.003, respectively) and peripapillary retinal nerve fiber layer thinning (–0.305 ± 0.107, p = 0.004; –0.358 ± 0.106, p = 0.001, respectively). Conclusion: Ceramide levels are altered in PwMS and may be associated with retinal neurodegeneration and physical disability.
Chronic inflammation is thought to contribute to the early pathogenesis of Alzheimer's disease (AD). However, the precise mechanism by which inflammatory cytokines promote the formation and deposition of Aβ remains unclear. Available data suggest that applications of inflammatory cytokines onto isolated neurons do not promote the formation of Aβ, suggesting an indirect mechanism of action. Based on evidence astrocyte derived extracellular vesicles (astrocyte derived EVs) regulate neuronal functions, and data that inflammatory cytokines can modify the molecular cargo of astrocyte derived EVs, we sought to determine if IL‐1β promotes the formation of Aβ indirectly through actions of astrocyte derived EVs on neurons. The production of Aβ was increased when neurons were exposed to astrocyte derived EVs shed in response to IL‐1β (astrocyte derived EV‐IL‐1β). The mechanism for this effect involved an enrichment of Casein kinase 1 (CK1) in astrocyte derived EV‐IL‐1β. This astrocyte derived CK1 was delivered to neurons where it formed a complex with neuronal APC and GSK3 to inhibit the β‐catenin degradation. Stabilized β‐catenin translocated to the nucleus and bound to Hnrnpc gene at promoter regions. An increased cellular concentration of hnRNP C promoted the translation of APP by outcompeting the translational repressor fragile X mental retardation protein (FMRP) bound to APP mRNA. An increased amount of APP protein became co‐localized with BACE1 in enlarged membrane microdomains concurrent with increased production of Aβ. These findings identify a mechanism whereby inflammation promotes the formation of Aβ through the actions of astrocyte derived EV‐IL‐1β on neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.