Single-sideband (SSB) modulation through Hilbert transformation has successfully transmitted data using only half the bandwidth of the traditional scheme for the same amount of contained information. Toward this end, the four single-sideband (4-SSB) approach for high order modulation is a promising approach for the next-generation communications by applying soft-input soft-output (SISO) equalizer algorithms over orthogonal frequency division multiplexing (OFDM). However, OFDM is challenging for realizing the feasible 5G communications, compared to the emerging techniques, e.g., non-orthogonal multiple access (NOMA), orthogonal multiple access (OMA) or multiple-input multiple-output (MIMO). Since the 4-SSB is an orthogonal modulation which was successfully applied over the traditional OFDM, in this article, we propose a novel 4-SSB modulation scheme over OFDM Guard Interval (GI) and massive MIMO. Besides the carrier signal, from the receiver side, we also apply the shadow equalizer algorithm in the uncoded and coded environment using turbo codes to achieve the 4-SSB with high efficiency from low complexity and energy consumption for 5G. The evaluation results validate that our system consumes lower energy due to low complexity gained from same number of iterations without the heavy decoding as of the 4-SSB SISO based on the turbo equalizer. In addition, the 4-SSB over the OFDM GI achieves the best performance among the relevant approaches conducted in 4-SSB. The proposal then acts as a practical communication system designed to solve the inter-symbol interference (ISI) induced by additional Hilbert transform in the wireless environment toward fifth generation (5G), given that turbo code is considered as a potential channel coding scheme for 5G radio specification.
In radio communications, using wavelet signal analysis to recover the symbol rate timing clock of orthogonal frequency-division multiplexing (OFDM) is a new approach that can tolerate signal distortion from intersymbol interference (ISI) and intercarrier interference of encoding digital data on multiple carrier frequencies. Typically, the reception synchronization with wavelet signal analysis in OFDM can improve the performance over the fourier transform-based OFDM. However, a synchronization procedure that is stable against distortion and noise is essential to diminish the symbol synchronization establishment and operation sampling period. In this paper, we propose an OFDM synchronization system and analyze the impact of the wavelet denoise procedure on the OFDM system, which extracts the symbol rate of the OFDM frame. The evaluation results show that the proposed system can optimize the frequency window size to enable an efficient timing and frequency offset estimation with high and stable performance in terms of bit error rate (BER) and Frame Error Rate (FER) especially when the value of EbN0 (a normalized signal-to-noise ratio SNR measure) is greater than 8 dB, thanks to the wavelet transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.