Abstract:Improving the soil quality in arid agro-ecosystems requires a greater understanding of how the time-of-sampling and management affect the soil measurements. We evaluated the selected soil quality indicators on samples collected at a 0-0.15 m depth, and at various sampling dates of the year, corresponding to the fall of 2015, winter of 2015/2016, spring of 2016, and the summer of 2016. The three crop management systems sampled included alfalfa (Medicago sativa), upland cotton (Gossypium hirsutum), and pecan (Carya illinoinensis). The soil properties measured included the wet aggregate stability (WAS), mean weight diameter of dry aggregates (MWD), dry aggregates greater than 2 mm (AGG >2 mm), dry aggregates less than 0.25 mm (AGG <0.25 mm), available water capacity (AWC), soil organic matter (SOM), permanganate oxidizable carbon (POXC), soil bulk density (BD), soil electrical conductivity (EC), pH, nitrate-nitrogen (NO3-N), extractable potassium (K), extractable phosphorus (P), calcium (Ca), magnesium (Mg), sodium adsorption ratio (SAR), and micronutrients (zinc, iron, copper, and manganese). Out of the 21 soil measurements, 15 varied significantly with the time-of-sampling within a year, although there were no consistent trends in variability. However, only a few measurements differed significantly with the crop management practices tested. Wet aggregate stability, MWD, AWC, and BD were significantly higher in the summer, while POXC and SOM were significantly higher in the fall and winter, respectively. Soil quality indicators such as NO3-N, K, and P decreased significantly during the spring. This study shows that the seasonal variability of the soil measurements can be significant in the arid agro-ecosystems, with the magnitude of variation depending on the measurement type. The soil managers in the region need to account for this variability, in order to be able to assess the changes in the soil quality. Also, because of the variability that can occur across the different sampling dates within a year, it is advisable to sample during the same period every year, for a consistent interpretation of the directional changes of the soil quality indicators.
Reducing tillage has become necessary in irrigated, arid cropping systems in southwestern USA, to address soil degradation and erosion problems associated with intensive soil tillage. A study was conducted in arid southwestern USA, to compare a reduced tillage method (strip tillage) to two conventional tillage methods (plow tillage and raised bed tillage) for irrigated upland cotton (Gossypium hirsutum) production. Strip tillage (ST) was established in a single pass by a strip tillage equipment, while the plow tillage (PT) consisted of plowing, disking the soil twice, subsoiling and harrowing. The raised bed tillage (BT) consisted of all the tillage operations under PT method, with an additional tillage event to shape the beds. Crop and soil parameters were assessed during the growing seasons. Soil physical and biological measurements were assessed at the beginning of the trial before planting, and at the end of each cropping season. Results show no significant differences in cotton yield and fiber quality parameters under the tillage systems tested. Out of the soil physical measurements assessed, the cone index (CI) significantly differed with tillage systems during the mid-season assessments, with BT generally having better CI than ST and PT. Other physical measurements were not significant with tillage, but significantly declined over time irrespective of tillage treatments. Out of the soil biological measurements assessed, the total fungal biomass and the arbuscular mycorrhizae fungi biomass were significant with tillage, with ST and BT having higher measurements than PT. In contrast to soil physical measurements that declined, most of the soil biological measurements improved over time. Comparing some soil biological measurements at the beginning to the end of the trial across the tillage treatments, the total microbial biomass increased from 714 to 3565 ng/g, the total bacterial biomass increased from 321 to 1478 ng/g, and the total fungal biomass increased from 84 to 436 ng/g. This study shows that ST can perform adequately for sustainable cotton production in an irrigated arid region of United States.
HighlightsFour summer cover crops under two irrigation regimes were tested for soil wind erosion control.Soil aggregate stability and wind erosion losses were improved with plant cover in the peak summer.Sorghum sudan is a prominent summer species for wind erosion control in the arid southwest. Abstract. Cover crops can have significant impacts on minimizing soil erosion by wind, which is a common problem in the arid southwest. A study was conducted at NMSU Leyendecker Plant Science Center, Las Cruces, New Mexico, to evaluate the impacts of selected summer cover crops on soil loss during wind erosion events. Four summer grass species [Japanese millet (Echinochloa esculenta), pearl millet (Pennisetum glaucum), brown top millet (Urochloa ramosa (L.) Nguyen), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. Sudanese)] were randomly assigned to four blocks under two irrigation regimes (full-irrigation and deficit-irrigation). Results showed significant effect of grasses on horizontal soil flux compared to control under both irrigation regimes. When comparing the grasses, sorghum sudan grass performed better than the other tested summer cover crops for soil surface protection from wind erosion with its higher ground coverage, higher plant density, taller plant height and higher amount of biomass, while brown top millet was least effective in terms of plant and erosion control characteristics (P=0.05). Pearl millet and Japanese millet performed better than brown top millet, but was as effective as sorghum sudan as barriers against the wind erosion. Therefore, sorghum sudan is a prominent cover crop for summer in the arid zones of desert southwest. Producers of this region can be significantly benefited from the current research recommendations about cover crops choices for summer season. Keywords: Arid climates, Cover cropping, Summer grasses, Wind erosion control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.