Because of its easy accessibility, the skin is a very attractive target for gene therapy purposes. To study potential clinical applications in a preclinical setting, appropriate animal models are needed. Pig skin is very similar to human skin, and a variety of human diseases that are potentially amenable to gene therapy applications also occur in pigs. Only a few studies have analyzed the engraftment of transduced keratinocytes (KC) in pigs, however, with limited success. We describe a porcine model in which pig KC were transduced ex vivo with a retroviral vector encoding a marker gene and subsequently grafted onto the autologous host, utilizing a relatively simple grafting technique. Enhanced transduction efficiency was achieved by an optimized transduction protocol including centrifugation of the retroviral vector at a temperature of 32 degrees C. Transduced KC were then seeded onto acellular dermis, forming a stratified epidermis. Grafting was performed by creating full thickness wounds and placing the skin graft onto the muscle fascia, covered by a protective skin flap for several days. Successful engraftment of transduced KC was demonstrated by immunohistochemistry of biopsies taken at different time points, showing transgene expression in 40-50% of grafted KC. After 4 weeks, KC expressing a foreign marker gene was lost, suggesting a transgene-specific immune response in the immunocompetent pigs and highlighting the potential problems for clinical gene therapy studies when transferring new genetic material into a patient. The model presented here may be used to examine applications of skin gene therapy, where retroviral vectors encoding endogenous pig genes will be expressed in the skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.