Remote sensing data proved to be a valuable resource in a variety of earth science applications. Using high-dimensional data with advanced methods such as machine learning algorithms (MLAs), a sub-domain of artificial intelligence, enhances lithological mapping by spectral classification. Support vector machines (SVM) are one of the most popular MLAs with the ability to define non-linear decision boundaries in high-dimensional feature space by solving a quadratic optimization problem. This paper describes a supervised classification method considering SVM for lithological mapping in the region of Souk Arbaa Sahel belonging to the Sidi Ifni inlier, located in southern Morocco (Western Anti-Atlas). The aims of this study were (1) to refine the existing lithological map of this region, and (2) to evaluate and study the performance of the SVM approach by using combined spectral features of Landsat 8 OLI with digital elevation model (DEM) geomorphometric attributes of ALOS/PALSAR data. We performed an SVM classification method to allow the joint use of geomorphometric features and multispectral data of Landsat 8 OLI. The results indicated an overall classification accuracy of 85%. From the results obtained, we can conclude that the classification approach produced an image containing lithological units which easily identified formations such as silt, alluvium, limestone, dolomite, conglomerate, sandstone, rhyolite, andesite, granodiorite, quartzite, lutite, and ignimbrite, coinciding with those already existing on the published geological map. This result confirms the ability of SVM as a supervised learning algorithm for lithological mapping purposes.
Mapping lithological units of an area using remote sensing data can be broadly grouped into pixel-based (PBIA), sub-pixel based (SPBIA) and object-based (GEOBIA) image analysis approaches. Since it is not only the datasets adequacy but also the correct classification selection that influences the lithological mapping. This research is intended to analyze and evaluate the efficiency of these three approaches for lithological mapping in semi-arid areas, by using Sentinel-2A data and many algorithms for image enhancement and spectral analysis, in particular two specialized Band Ratio (BR) and the Independent component analysis (ICA), for that reason the Paleozoic Massif of Skhour Rehamna, situated in the western Moroccan Meseta was chosen. In this study, the support vector machine (SVM) that is theoretically more efficient machine learning algorithm (MLA) in geological mapping is used in PBIA and GEOBIA approaches. The evaluation and comparison of the performance of these different methods showed that SVM-GEOBIA approach gives the highest overall classification accuracy (OA≈93%) and kappa coefficient (K) of 0,89, while SPBIA classification showed OA of approximately 89% and kappa coefficient of 0,84, whereas the lithological maps resulted from SVM-PBIA method exhibit salt and pepper noise, with a lower OA of 87% and kappa coefficient of 0,80 comparing them with the other classification approaches. From the results of this comparative study, we can conclude that the SVM-GEOBIA classification approach is the most suitable technique for lithological mapping in semi-arid regions, where outcrops are often inaccessible, which complicates classic cartographic work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.