The phosphoryl-binding loops in the guanosine diphosphate binding domain of elongation factor Tu were studied by 15N heteronuclear proton-observe NMR methods. Five proton resonances were found below 10.5 ppm. One of these was assigned to the amide group of Lys 24, which is a conserved residue in the phosphoryl-binding concensus loop of purine nucleotide binding proteins. The uncharacteristic downfield proton shift is attributed to a strong hydrogen bond with a phosphate oxygen. The amide protons from the homologous lysines in N-ras p21 [Redfield, A.G., & Papastavros, M.Z. (1990) Biochemistry 29, 3509-3514] and the catalytic domain of Escherichia coli elongation factor Tu [Lowry, D.F., Cool, R.H., Redfield, A.G., & Parmeggiani, A. (1991) Biochemistry 30, 10872-10877] also resonate downfield in similar positions. We propose that the downfield shift of this lysine amide proton is a spectral marker for this class of proteins. We also have studied the temperature dependence of the downfield resonances and find a possible conformation change at 40 degrees C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.