Titanium dental implants with sandblasted and/or acid-etched surfaces have shown clinical superiority in comparison to their smooth, machined counterparts, and are now state of the art. Sandblasting of finished, sintered zirconia implants, however, will damage the surface structure and affect the mechanical properties. To improve osseointegration of zirconia dental implants without impairing the original mechanical strength by crack initiation and partial phase transformation from tetragonal to monoclinic, roughening of the zirconia surface by sandblasting before the final sintering step was employed. Impact of the treatments on cellular reactions of SAOS-2 human osteoblast-like cells was investigated. Sandblasting of Yttrium-stabilized zirconia (Y-TZP) with 120 μm and 250 μm Al2O3 enhanced average roughness (Sa) from 0.28 μm to 4.1 μm and 5.72 μm, respectively. Cell adhesion of SAOS-2 osteoblasts was enhanced up to 175% on sandblasted surfaces, compared to the machined zirconia reference (100%). Metabolic activity and proliferation in the logarithmic growth phase (24-48 h) were not significantly affected. Sample surface coverage by the cells after prolonged incubation (72 h) was markedly decreased on the roughened samples, indicating a shift towards increased differentiation on these surfaces. The approach investigated here to roughen zirconia implants by sandblasting before sintering shows potential to improve the clinical performance of ceramic dental implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.