The probabilistic nature of single-photon sources and photon-photon interactions encourages encoding as much quantum information as possible in every photon for the purpose of photonic quantum information processing. Here, by encoding highdimensional units of information (qudits) in time and frequency degrees of freedom using on-chip sources, we report deterministic two-qudit gates in a single photon with fidelities exceeding 0.90 in the computational basis. Constructing a two-qudit modulo SUM gate, we generate and measure a single-photon state with nonseparability between time and frequency qudits. We then employ this SUM operation on two frequency-bin entangled photons-each carrying two 32-dimensional qudits-to realize a four-party high-dimensional Greenberger-Horne-Zeilinger state, occupying a Hilbert space equivalent to that of 20 qubits. Although highdimensional coding alone is ultimately not scalable for universal quantum computing, our design shows the potential of deterministic optical quantum operations in large encoding spaces for practical and compact quantum information processing protocols.
The Phase Estimation Algorithm (PEA) is an important quantum algorithm used independently or as a key subroutine in other quantum algorithms. Currently most implementations of the PEA are based on qubits, where the computational units in the quantum circuits are 2D states. Performing quantum computing tasks with higher dimensional states—qudits —has been proposed, yet a qudit‐based PEA has not been realized. Using qudits can reduce the resources needed for achieving a given precision or success probability. Compared to other quantum computing hardware, photonic systems have the advantage of being resilient to noise, but the probabilistic nature of photon–photon interaction makes it difficult to realize two‐photon controlled gates that are necessary components in many quantum algorithms. In this work, an experimental realization of a qudit‐based PEA on a photonic platform is reported, utilizing the high dimensionality in time and frequency degrees of freedom (DoFs) in a single photon. The controlled‐unitary gates can be realized in a deterministic fashion, as the control and target registers are now represented by two DoFs in a single photon. This first implementation of a qudit PEA, on any platform, successfully retrieves any arbitrary phase with one ternary digit of precision.
Stimulated Raman scattering (SRS) is a powerful, label-free imaging technique that holds significant potential for medical imaging. To allow chemical specificity and minimize spectral distortion in the imaging of live species, a high-speed multiplex SRS imaging platform is needed. By combining a spectral focusing excitation technique with a rapid acousto-optic delay line, we demonstrate a hyperspectral SRS imaging platform capable of measuring a 3-dB spectral window of ∼200 cm-1 within 12.8 μs with a scan rate of 30 KHz. We present hyperspectral images of a mixture of two different microsphere polymers as well as live fungal cells mixed with human blood.
The Hong-Ou-Mandel (HOM) interference is one of the most fundamental quantum-mechanical effects that reveal a nonclassical behavior of single photons. Two identical photons that are incident on the input ports of an unbiased beam splitter always exit the beam splitter together from the same output port, an effect referred to as photon bunching. In this Letter, we utilize a single electro-optic phase modulator as a probabilistic frequency beam splitter, which we exploit to observe HOM interference between two photons that are in different spectral modes, yet are identical in other characteristics. Our approach enables linear optical quantum information processing protocols using the frequency degree of freedom in photons such as quantum computing techniques with linear optics.
Control over the duration of a quantum walk is critical to unlocking its full potential for quantum search and the simulation of many-body physics. Here we report quantum walks of biphoton frequency combs where the duration of the walk, or circuit depth, is tunable over a continuous range without any change to the physical footprint of the system—a feature absent from previous photonic implementations. In our platform, entangled photon pairs hop between discrete frequency modes with the coupling between these modes mediated by electro-optic modulation of the waveguide refractive index. Through control of the phase across different modes, we demonstrate a rich variety of behavior: from walks exhibiting enhanced ballistic transport or strong energy confinement, to subspaces featuring scattering centers or local traps. We also explore the role of entanglement dimensionality in the creation of energy bound states, which illustrates the potential for these walks to quantify high-dimensional entanglement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.