A dual-band, compact, high-gain, simple geometry, wideband antenna for 5G millimeter-wave applications at 28 and 38 GHz is proposed in this paper. Initially, an antenna operating over dual bands of 28 and 38 GHz was designed. Later, a four-port Multiple Input Multiple Output (MIMO) antenna was developed for the same dual-band applications for high data rates, low latency, and improved capacity for 5G communication devices. To bring down mutual coupling between antenna elements, a parasitic element of simple geometry was loaded between the MIMO elements. After the insertion of the parasitic element, the isolation of the antenna improved by 25 dB. The suggested creation was designed using a Rogers/Duroid RT-5870 laminate with a thickness of 0.79 mm. The single element proposed has an overall small size of 13 mm × 15 mm, while the MIMO configuration of the proposed work has a miniaturized size of 28 mm × 28 mm. The parasitic element-loaded MIMO antenna offers a high gain of 9.5 and 11.5 dB at resonance frequencies of 28 GHz and 38 GHz, respectively. Various MIMO parameters were also examined, and the results generated by the EM tool CST Studio Suite® and hardware prototype are presented. The parasitic element-loaded MIMO antenna offers an Envelop Correlation Coefficient (ECC) < 0.001 and Channel Capacity Loss (CCL) < 0.01 bps/Hz, which are quite good values. Moreover, a comparison with existing work in the literature is given to show the superiority of the MIMO antenna. The suggested MIMO antenna provides good results and is regarded as a solid candidate for future 5G applications according to the comparison with the state of the art, results, and discussion.
Metamaterials exhibit properties in terms of subwavelength operation or phase manipulation, among others, that can be used in a variety of applications in 5G communication systems. The future and current 5G devices demand high efficiency, high data rate, computational capabilities, cost-effectiveness, compact size, and low power consumption. This variation and advancement are possible when the antenna design is revised to operate over wideband, high gain, and multiband and has characteristics of compact size, reconfiguration, absorption, and simple ease of fabrication. The materials loaded with antennas or, in the same cases, without antennas, offer the aforementioned characteristics to bring advancement in order to facilitate users. A number of works on designing metasurfaces capable of improving bandwidth, gain efficiency, and reducing the size and cost of antennas are available in the literature for this purpose. Not only are these applications possible, but the intelligent metasurfaces are also designed to obtain reconfiguration in terms of frequency and polarization. The number of absorbers loaded with metamaterials is also designed to improve the absorption percentage used for radar applications. Thus, in this paper, the general overview of different types of metamaterials and their role in performance enhancement and application in 5G and 6G communication systems is discussed.
This article presents the circularly polarized antenna operating over 28 GHz mm-wave applications. The suggested antenna has compact size, simple geometry, wideband, high gain, and offers circular polarization. Afterward, two-port MIMO antenna are designed to get Left Hand Circular Polarization (LHCP) and Right-Hand Circular Polarization (RHCP). Four different cases are adopted to construct two-port MIMO antenna of suggested antenna. In case 1, both of the elements are placed parallel to each other; in the second case, the element is parallel but the radiating patch of second antenna element are rotated by 180°. In the third case, the second antenna element is placed orthogonally to the first antenna element. In the final case, the antenna is parallel but placed in the opposite end of substrate material. The S-parameters, axial ratio bandwidth (ARBW) gain, and radiation efficiency are studied and compared in all these cases. The two MIMO systems of all cases are designed by using Roger RT/Duroid 6002 with thickness of 0.79 mm. The overall size of two-port MIMO antennas is 20.5 mm × 12 mm × 0.79 mm. The MIMO configuration of the suggested CP antenna offers wideband, low mutual coupling, wide ARBW, high gain, and high radiation efficiency. The hardware prototype of all cases is fabricated to verify the predicated results. Moreover, the comparison of suggested two-port MIMO antenna is also performed with already published work, which show the quality of suggested work in terms of various performance parameters over them.
The main objective of this work is to propose an approach for improving the performance of miniaturized microstrip patch antennas (MPAs) that are loaded with a thin film consisting of a high relative permittivity material. The method uses a thin film to decrease the antenna’s resonance frequency while keeping the antenna’s patch dimensions. For the enhancement of the antenna’s performance with a thin film, the dimensions of the patch of the designed antenna are optimized utilizing genetic algorithms (GAs). The resonance frequency of the microstrip patch antenna was changed from 5.8 GHz to 4.0 GHz, and the area of the proposed antenna was minimized by around 60%, especially in comparison to a conventional antenna alone without thin film. Most of the performances of the proposed antenna such as the return loss, bandwidth, and voltage standing wave ratio (VSWR) were improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.