a b s t r a c tCurrently, the world is witnessing a mounting avalanche of data due to the increasing number of mobile network subscribers, Internet websites, and online services. This trend is continuing to develop in a quick and diverse manner in the form of big data. Big data analytics can process large amounts of raw data and extract useful, smaller-sized information, which can be used by different parties to make reliable decisions.In this paper, we conduct a survey on the role that big data analytics can play in the design of data communication networks. Integrating the latest advances that employ big data analytics with the networks' control/traffic layers might be the best way to build robust data communication networks with refined performance and intelligent features. First, the survey starts with the introduction of the big data basic concepts, framework, and characteristics. Second, we illustrate the main network design cycle employing big data analytics. This cycle represents the umbrella concept that unifies the surveyed topics. Third, there is a detailed review of the current academic and industrial effort s toward network design using big data analytics. Forth, we identify the challenges confronting the utilization of big data analytics in network design. Finally, we highlight several future research directions. To the best of our knowledge, this is the first survey that addresses the use of big data analytics techniques for the design of a broad range of networks.
Big data analytics is one of the state-of-the-art tools to optimize networks and transform them from merely being a blind tube that conveys data, into a cognitive, conscious, and self-optimizing entity that can intelligently adapt according to the needs of its users. This, in fact, can be regarded as one of the highest forthcoming priorities of future networks. In this paper, we propose a system for OutPatient (OP) centric Long Term Evolution-Advanced (LTE-A) network optimization. Big data harvested from the OPs' medical records, along with current readings from their body-connected medical IoT sensors are processed and analyzed to predict the likelihood of a life-threatening medical condition, for instance, an imminent stroke. This prediction is used to ensure that the OP is assigned an optimal LTE-A Physical Resource Blocks (PRBs) to transmit their critical data to their healthcare provider with minimal delay. To the best of our knowledge, this is the first time big data analytics are utilized to optimize a cellular network in an OP-conscious manner. The PRBs assignment is optimized using Mixed Integer Linear Programming (MILP) and a real-time heuristic. Two approaches are proposed, the Weighted Sum Rate Maximization (WSRMax) approach and the Proportional Fairness (PF) approach. The approaches increased the OPs' average SINR by 26.6% and 40.5%, respectively. The WSRMax approach increased the system's total SINR to a level higher than that of the PF approach, however, the PF approach reported higher SINRs for the OPs, better fairness and a lower margin of error.
Having a cognitive and self-optimizing network that proactively adapts not only to channel conditions, but also according to its users' needs can be one of the highest forthcoming priorities of future 6G Heterogeneous Networks (HetNets). In this paper, we introduce an interdisciplinary approach linking the concepts of e-healthcare, priority, big data analytics (BDA) and radio resource optimization in a multi-tier 5G network. We employ three machine learning (ML) algorithms, namely, naïve Bayesian (NB) classifier, logistic regression (LR), and decision tree (DT), working as an ensemble system to analyze historical medical records of stroke out-patients (OPs) and readings from body-attached internet-of-things (IoT) sensors to predict the likelihood of an imminent stroke. We convert the stroke likelihood into a risk factor functioning as a priority in a mixed integer linear programming (MILP) optimization model. Hence, the task is to optimally allocate physical resource blocks (PRBs) to HetNet users while prioritizing OPs by granting them high gain PRBs according to the severity of their medical state. Thus, empowering the OPs to send their critical data to their healthcare provider with minimized delay. To that end, two optimization approaches are proposed, a weighted sum rate maximization (WSRMax) approach and a proportional fairness (PF) approach. The proposed approaches increased the OPs' average signal to interference plus noise (SINR) by 57% and 95%, respectively. The WSRMax approach increased the system's total SINR to a level higher than that of the PF approach, nevertheless, the PF approach yielded higher SINRs for the OPs, better fairness and a lower margin of error.
In this paper, we introduce machine learning approaches that are used to prioritize outpatients (OP) according to their current health state, resulting in selfoptimizing heterogeneous networks (HetNet) that intelligently adapt according to users' needs. We use a naïve Bayesian classifier to analyze data acquired from OPs' medical records, alongside data from medical Internet of Things (IoT) sensors that provide the current state of the OP. We use this machine learning algorithm to calculate the likelihood of a lifethreatening medical condition, in this case an imminent stroke. An OP is assigned high-powered resource blocks (RBs) according to the seriousness of their current health state, enabling them to remain connected and send their critical data to the designated medical facility with minimal delay. Using a mixed integer linear programming formulation (MILP), we present two approaches to optimizing the uplink side of a HetNet in terms of user-RB assignment: a Weighted Sum Rate Maximization (WSRMax) approach and a Proportional Fairness (PF) approach. Using these approaches, we illustrate the utility of the proposed system in terms of providing reliable connectivity to medical IoT sensors, enabling the OPs to maintain the quality and speed of their connection. Moreover, we demonstrate how system response can change according to alterations in the OPs' medical conditions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.