This work describes how numerical simulations based on the generalized nonlinear Schrödinger equation (GNLSE) have opened the way for a comprehensive physical understanding of the fundamental complex dynamics of supercontinuum generation (SCG) and Soliton fission (SC). SC was generated in optical fibres and fibre lasers that pumped by watt and kilowatt pulse sources, as well as in continuous-wave sources (CW) Light sources with increased spontaneous emission. An efficient approach for creating a continuous-wave source of soliton fission in the optical fibres pumped by CW light has been discovered. The ability to generate supercontinuum opens the door to a wide range of applications, from medicine to telecommunications.
Photonic crystal fibers (PCFs) with periodic structure, are a never-ending and constantly evolving. in this study was designed fiber photonic crystal is proposed and proven through the Matlab program, which employs the Split-Step Fourier method (SSFM). Among the consequences demonstrated and studied are the solitons in different order, The impact of changing the radius of air holes on the geography of solitone propagation during fiber has studied, and get supercontinuum generation by increasing the value of radius affecting the third-order soliton. This spectral expansion has important in many modern applications, including medical, industrial and military, as well as have an important role in communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.