This article surveys blockchain-based approaches for several security services. These services include authentication, confidentiality, privacy and access control list (ACL), data and resource provenance, and integrity assurance. All these services are critical for the current distributed applications, especially due to the large amount of data being processed over the networks and the use of cloud computing. Authentication ensures that the user is who he/she claims to be. Confidentiality guarantees that data cannot be read by unauthorized users. Privacy provides the users the ability to control who can access their data. Provenance allows an efficient tracking of the data and resources along with their ownership and utilization over the network. Integrity helps in verifying that the data has not been modified or altered. These services are currently managed by centralized controllers, for example, a certificate authority. Therefore, the services are prone to attacks on the centralized controller. On the other hand, blockchain is a secured and distributed ledger that can help resolve many of the problems with centralization. The objectives of this paper are to give insights on the use of security services for current applications, to highlight the state of the art techniques that are currently used to provide these services, to describe their challenges, and to discuss how the blockchain technology can resolve these challenges. Further, several blockchain-based approaches providing such security services are compared thoroughly. Challenges associated with using blockchain-based security services are also discussed to spur further research in this area.
Service Function Chaining (SFC) is the problem of deploying various network service instances over geographically distributed data centers and providing inter-connectivity among them. The goal is to enable the network traffic to flow smoothly through the underlying network, resulting in an optimal quality of experience to the end-users. Proper chaining of network functions leads to optimal utilization of distributed resources. This has been a de-facto model in the telecom industry with network functions deployed over underlying hardware. Though this model has served the telecom industry well so far, it has been adapted mostly to suit the static behavior of network services and service demands due to the deployment of the services directly over physical resources. This results in network ossification with larger delays to the end-users, especially with the data-centric model in which the computational resources are moving closer to end users. A novel networking paradigm, Network Function Virtualization (NFV), meets the user demands dynamically and reduces operational expenses (OpEx) and capital expenditures (CapEx), by implementing network functions in the software layer known as virtual network functions (VNFs). VNFs are then interconnected to form a complete end-toend service, also known as service function chains (SFCs). In this work, we study the problem of deploying service function chains over network function virtualized architecture. Specifically, we study virtual network function placement problem for the optimal SFC formation across geographically distributed clouds. We set up the problem of minimizing inter-cloud traffic and response time in a multi-cloud scenario as an ILP optimization problem, along with important constraints such as total deployment costs and service level agreements (SLAs). We consider link delays and computational delays in our model. The link queues are modeled as M/D/1 (single server/Poisson arrival/deterministic service times) and server queues as M/M/1 (single server/Poisson arrival/exponential service times) based on the statistical analysis. In addition, we present a novel affinity-based approach (ABA) to solve the problem for larger networks. We provide a performance comparison between the proposed heuristic and simple greedy approach (SGA) used in the state-of-the-art systems. Greedy approach has already been widely studied in the literature for the VM placement problem. Especially we compare our proposed heuristic with a greedy approach using first-fit decreasing (FFD) method. By observing the results, we conclude that the affinity-based approach for placing the service functions in the network produces better results compared against the simple greedy (FFD) approach in terms of both, total delays and total resource cost. We observe that with a little compromise (gap of less than 10% of the optimal) in the solution quality (total delays and cost), affinity-based heuristic can solve the larger problem more quickly than ILP.
This paper presents the development of a SCADA system testbed used for cybersecurity research. The testbed consists of a water storage tank's control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks are conducted against the testbed. During the attacks, the network traffic is captured, and features are extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms are trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naïve Bayes and KNN. After that, the trained machine learning models are built and deployed in the network, where new tests are made using online network traffic. The performance obtained during the training and test of the machine learning models is compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.