The present study deals with the development of novel cenosphere‐epoxy multiscale syntactic foam (MSF) reinforced with halloysite nanotubes (HNTs). Cenospheres with different volume fractions (0, 20, 30, 40, 50 vol%) and HNTs (1 vol%) used in the fabrication of syntactic foams. The addition of HNTs increases the tensile modulus (42%) and flexural modulus (66%) compared with plain syntactic foam (PSF). Furthermore, FTIR studies reveal the strong hydrogen bonding interaction between HNTs and epoxy. Field emission scanning electron microscopy (FESEM) confirms the unique crack deflection phenomenon by HNT, which indicates the structure–property correlation. In addition, the storage and loss modulus of MSFs is 36 and 113%, respectively (at 30°C) higher than the neat epoxy. Improvement in the tensile and flexural properties along with excellent thermal stability at elevated temperature makes MSF a promising material for structural, weight‐sensitive, and high‐temperature applications.
This paper deals with an investigation of the post-curing effect of halloysite nanotubes (HNTs) reinforced syntactic foam (HRSF) containing cenosphere as hollow inclusion at 0, 20, and 40 vol% in an epoxy matrix. Compression, flexural, and thermal properties of HRSF (1 vol% HNTs) and cenosphere/epoxy syntactic foam (CESF) composites without HNTs are studied under the influence of post-curing. Further, the post-cured HRSF containing 40 vol% cenosphere (NSF40_H) exhibited a compressive modulus of 33.2% higher than room temperature cured neat epoxy due to improved crosslinking. Addition of HNTs in NSF40_H augments the flexural modulus up to 26.9% compared to post-cured neat epoxy. Additionally, the glass transition temperature ( Tg) of CESF composites with 40 vol% cenosphere was increased by 24.3 °C compared to the room temperature cured sample. This positive shift in Tg can be attributed to the beneficial impact of post-curing, as indicated by differential scanning calorimetry study. Thermogravimetric results demonstrated better thermal stability of HRSF relative to CESF and neat epoxy composites. Transmission electron microscopy illustrated the structure-property correlations of nanotube reinforcement. The improved properties of syntactic foams could be viewed as a potential material for lightweight constructions, especially in the marine and automobile industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.