We present early pilot-studies of a new international project, developing advanced robotics to handle nuclear waste. Despite enormous remote handling requirements, there has been remarkably little use of robots by the nuclear industry. The few robots deployed have been directly teleoperated in rudimentary ways, with no advanced control methods or autonomy. Most remote handling is still done by an aging workforce of highly skilled experts, using 1960s style mechanical Master-Slave devices. In contrast, this paper explores how novice human operators can rapidly learn to control modern robots to perform basic manipulation tasks; also how autonomous robotics techniques can be used for operator assistance, to increase throughput rates, decrease errors, and enhance safety. We compare humans directly teleoperating a robot arm, against humansupervised semi-autonomous control exploiting computer vision, visual servoing and autonomous grasping algorithms. We show how novice operators rapidly improve their performance with training; suggest how training needs might scale with task complexity; and demonstrate how advanced autonomous robotics techniques can help human operators improve their overall task performance. An additional contribution of this paper is to show how rigorous experimental and analytical methods from human factors research, can be applied to perform principled scientific evaluations of human test-subjects controlling robots to perform practical manipulative tasks.
Gripper
CameraSample test rig 7 DOF Robot Test objects for stacking task
This paper investigates learning effects and human operator training practices in variable autonomy robotic systems. These factors are known to affect performance of a human-robot system and are frequently overlooked. We present the results from an experiment inspired by a search and rescue scenario in which operators remotely controlled a mobile robot with either Human-Initiative (HI) or Mixed-Initiative (MI) control. Evidence suggests learning in terms of primary navigation task and secondary (distractor) task performance. Further evidence is provided that MI and HI performance in a pure navigation task is equal. Lastly, guidelines are proposed for experimental design and operator training practices.
This paper presents a method for optimally combining pixel information from an infra-red thermal imaging camera, and a conventional visible spectrum colour camera, for tracking a moving target. The tracking algorithm rapidly re-learns its background models for each camera modality from scratch at every frame. This enables, firstly, automatic adjustment of the relative importance of thermal and visible information in decision making, and, secondly, a degree of "camouflage target" tracking by continuously re-weighting the importance of those parts of the target model that are most distinct from the present background at each frame. Furthermore, this very rapid background adaptation ensures robustness to large, sudden and arbitrary camera motion, and thus makes this method a useful tool for robotics, for example visual servoing of a pan-tilt turret mounted on a moving robot vehicle. The method can be used to track any kind of arbitrarily shaped or deforming object, however the combination of thermal and visible information proves particularly useful for enabling robots to track people. The method is also important in that it can be readily extended for data fusion of an arbitrary number of statistically independent features from one or arbitrarily many imaging modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.