Abstract. Let f : A → B and g : A → C be two commutative ring homomorphisms and let J and J ′ be two ideals of B and C, respectively, such thatThis paper investigates ring-theoretic properties of bi-amalgamations and capitalizes on previous works carried on various settings of pullbacks and amalgamations.In the second and third sections, we provide examples of bi-amalgamations and show how these constructions arise as pullbacks. The fourth section investigates the transfer of some basic ring theoretic properties to bi-amalgamations and the fifth section is devoted to the prime ideal structure of these constructions. All new results agree with recent studies in the literature on D'Anna-Finocchiaro-Fontana's amalgamations and duplications.
In this paper, we introduce and study the rings of Gorenstein homological dimensions less than or equal to 1. We call these Gorenstein (semi)hereditary rings and call a particular subclass of these strongly Gorenstein (semi)hereditary rings.
There is a variety of nice results about strongly Gorenstein flat modules over coherent rings. These results are done by Ding, Lie and Mao. The aim of this paper is to generalize some of these results, and to give homological descriptions of the strongly Gorenstein flat dimension (of modules and rings) over arbitrary associative rings.
Let R be a commutative ring with identity and S be a multiplicative subset of R. In this paper, we introduce the concept of weakly S-prime ideals which is a generalization of weakly prime ideals. Let P be an ideal of R disjoint with S. We say that P is a weakly S-prime ideal of R if there exists an s ∈ S such that, for all a, b ∈ R, if 0 ≠ ab ∈ P, then sa ∈ P or sb ∈ P. We show that weakly S-prime ideals have many analog properties to these of weakly prime ideals. We also use this new class of ideals to characterize S-Noetherian rings and S-principal ideal rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.