The monocarboxylate transporter MCT4 mediates lactic acid efflux from most tissues that are dependent on glycolysis for their ATP production. Here we demonstrate that expression of MCT4 mRNA and protein was increased >3-fold by a 48-h exposure to 1% O 2 , whereas MCT1 expression was not increased. The effect was mimicked by CoCl 2 (50 M), suggesting transcriptional regulation by hypoxia-inducible factor 1␣ (HIF-1␣). The predicted promoters for human MCT1, MCT2, and MCT4 were cloned into the pGL3 vector and shown to be active (luciferase luminescence) under basal conditions. Only the MCT4 promoter was activated (>2-fold) by hypoxia. No response was found in cells lacking HIF-1␣. Four potential hypoxiaresponse elements were identified, but deletion analysis implicated only two in the hypoxia response. These were just upstream from the transcription start site and also found in the mouse MCT4 promoter. Mutation of site 2 totally abolished the hypoxic response, whereas mutation of site 1 only reduced the response. Gel-shift analysis demonstrated that nuclear extracts of hypoxic but not normoxic HeLa cells contained two transcription factors that bound to DNA probes containing these hypoxia-response elements. The major shifted band was abolished by mutation of site 2, and supershift analysis confirmed that HIF-1␣ bound to this site. Binding of the second factor was abolished by mutation of site 1. We conclude that MCT4, like other glycolytic enzymes, is up-regulated by hypoxia through a HIF-1␣-mediated mechanism. This adaptive response allows the increased lactic acid produced during hypoxia to be rapidly lost from the cell.The transport of lactic acid across the plasma membrane is of fundamental importance for all mammalian cells. Glycolytic cells (e.g. white muscle fibers and all cells under hypoxic conditions), must rapidly export lactic acid; other tissues import lactic acid to fuel respiration (brain, heart, and red muscle) or gluconeogenesis (liver and kidney) (1-3). Transport is mediated by a family of proton-linked monocarboxylate transporters (MCT(s)) 2 that are also responsible for the transport of other metabolically important monocarboxylates including the ketone bodies. The MCT family has 14 members (3), 6 of which have been functionally characterized. Of these, only MCT1-MCT4 catalyze proton-coupled transport of lactate (1, 4 -7). MCT1 is expressed in most cells (1, 3), whereas MCT4 is expressed strongly only in glycolytic tissues (e.g. white muscle) that must export large amounts of lactic acid (2, 8). In rats, MCT2 is found in tissues requiring high affinity uptake of lactate or pyruvate such as liver and kidney (both gluconeogenic) and neurons (lactate and pyruvate oxidation). However, MCT2 is absent in most human tissues, whereas MCT3 expression is largely restricted to the retinal pigment epithelium (see Refs. 1 and 3). MCT1, MCT3, and MCT4 require ancillary glycoproteins, either gp70 (Embigin) or, more often CD147 (Basigin), for their expression at the plasma membrane (9 -10). MCT2 does not associ...
Exercise-induced hyperinsulinism (EIHI) is a dominantly inherited hypoglycemic disorder characterized by inappropriate insulin secretion during anaerobic exercise or on pyruvate load. We aimed to identify the molecular basis of this novel disorder of beta -cell regulation. EIHI mapped to chromosome 1 (LOD score 3.6) in a genome scan performed for two families with 10 EIHI-affected patients. Mutational analysis of the promoter of the SLC16A1 gene, which encodes monocarboxylate transporter 1 (MCT1), located under the linkage peak, revealed changes in all 13 identified patients with EIHI. Patient fibroblasts displayed abnormally high SLC16A1 transcript levels, although monocarboxylate transport activities were not changed in these cells, reflecting additional posttranscriptional control of MCT1 levels in extrapancreatic tissues. By contrast, when examined in beta cells, either of two SLC16A1 mutations identified in separate pedigrees resulted in increased protein binding to the corresponding promoter elements and marked (3- or 10-fold) transcriptional stimulation of SLC16A1 promoter-reporter constructs. These studies show that promoter-activating mutations in EIHI induce SLC16A1 expression in beta cells, where this gene is not usually transcribed, permitting pyruvate uptake and pyruvate-stimulated insulin release despite ensuing hypoglycemia. These findings describe a novel disease mechanism based on the failure of cell-specific transcriptional silencing of a gene that is highly expressed in other tissues.
Physiologically-based pharmacokinetic (PBPK) modeling has been extensively used to quantitatively translate in vitro data and evaluate temporal effects from drug-drug interactions (DDIs), arising due to reversible enzyme and transporter inhibition, irreversible time-dependent inhibition, enzyme induction, and/or suppression. PBPK modeling has now gained reasonable acceptance with the regulatory authorities for the cytochrome-P450-mediated DDIs and is routinely used. However, the application of PBPK for transporter-mediated DDIs (tDDI) in drug development is relatively uncommon. Because the predictive performance of PBPK models for tDDI is not well established, here, we represent and discuss examples of PBPK analyses included in regulatory submission (the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the Pharmaceuticals and Medical Devices Agency (PMDA)) across various tDDIs. The goal of this collaborative effort (involving scientists representing 17 pharmaceutical companies in the Consortium and from academia) is to reflect on the use of current databases and models to address tDDIs. This challenges the common perceptions on applications of PBPK for tDDIs and further delves into the requirements to improve such PBPK predictions. This review provides a reflection on the current trends in PBPK modeling for tDDIs and provides a framework to promote continuous use, verification, and improvement in industrialization of the transporter PBPK modeling. ) † Venkatesh Pilla Reddy and Kunal S. Taskar equally contributed to this article and are joint first authors. REVIEW(1)) CL H,int = (PS inf ,act + PS inf,pas ) * (CL int,met + CL int,sec ) PS ef f,act + PS ef f,pas + CL int,met + CL int,sec (3) CL H,int = PS inf * REVIEW
Spinal muscular atrophy (SMA) is a rare, inherited neuromuscular disease caused by deletion and/or mutation of the Survival of Motor Neuron 1 (SMN1) gene. A second gene, SMN2, produces low levels of functional SMN protein that are insufficient to fully compensate for the lack of SMN1. Risdiplam (RG7916; RO7034067) is an orally administered, small‐molecule SMN2 pre‐mRNA splicing modifier that distributes into the central nervous system (CNS) and peripheral tissues. To further explore risdiplam distribution, we assessed in vitro characteristics and in vivo drug levels and effect of risdiplam on SMN protein expression in different tissues in animal models. Total drug levels were similar in plasma, muscle, and brain of mice (n = 90), rats (n = 148), and monkeys (n = 24). As expected mechanistically based on its high passive permeability and not being a human multidrug resistance protein 1 substrate, risdiplam CSF levels reflected free compound concentration in plasma in monkeys. Tissue distribution remained unchanged when monkeys received risdiplam once daily for 39 weeks. A parallel dose‐dependent increase in SMN protein levels was seen in CNS and peripheral tissues in two SMA mouse models dosed with risdiplam. These in vitro and in vivo preclinical data strongly suggest that functional SMN protein increases seen in patients’ blood following risdiplam treatment should reflect similar increases in functional SMN protein in the CNS, muscle, and other peripheral tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.