The continuous increase in anthropogenic activities resulting in an increase in boron concentration in the environment is becoming a serious threat to public health and the ecosystem. In this regard, a hybrid polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) hollow fiber was synthesized with hydrophilic nano-titanium oxide (TiO2) at varied loadings of 0, 0.5, 1.0, 1.5, and 2.0 wt% using the phase inversion technique. The resultant membranes were characterized in terms of Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), contact angle, porosity, and zeta potential. The permeability flux was assessed using both pure water and leachate; also, rejection performance was evaluated based on boron removal from the leachate. The results revealed that the membrane with 1.0 wt% loading had the highest flux alongside an upturn in boron rejection percentage of 223 L/m2·h and 94.39%, respectively. In addition, the lowest contact angle of 50.01° was recorded with 1.0 wt% TiO2 loading, and this implies that it is the most hydrophilic. Throughout the experiment cycles, the fiber with 1.0 wt% TiO2 loading demonstrated a high flux recovery varying between 92.82% and 76.26% after 9 h filtration time. The physicochemical analysis of the permeate revealed that the boron concentration was significantly reduced to 0.43 mg/L, which is far lower than the discharge limit of 1.0 mg/L.
High proportion of copper has become a global challenge owing to its negative impact on the environment and public health complications. The present study focuses on the fabrication of a polyvinylidene fluoride (PVDF)-polyvinyl pyrrolidone (PVP) fiber membrane incorporated with varying loading (0, 0.5, 1.0, 1.5, and 2.0 wt%) of titanium dioxide (TiO2) nanoparticles via phase inversion technique to achieve hydrophilicity along with high selectivity for copper removal. The developed fibers were characterized based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), permeability, porosity, zeta potential, and contact angle. The improved membrane (with 1.0 wt% TiO2) concentration recorded the maximum flux (223 L/m2·h) and copper rejection (98.18%). Similarly, 1.0 wt% concentration of TiO2 nanoparticles made the membrane matrix more hydrophilic with the least contact angle of 50.01°. The maximum copper adsorption capacity of 69.68 mg/g was attained at 1.0 wt% TiO2 concentration. The experimental data of adsorption capacity were best fitted to the Freundlich isotherm model with R2 value of 0.99573. The hybrid membrane developed in this study has considerably eliminated copper from leachate and the concentration of copper in the permeate was substantially reduced to 0.044 mg/L, which is below standard discharge threshold.
The present study synthesized nano-magnetite (Fe3O4) from milled steel chips using the high energy ball milling (HEBM) method, characterized it, and then utilized it as a sorbent to remediate boron concentration at various pH (4–9), dosages (0.1–0.5 g), contact times (20–240 min), and initial concentrations (10–100 mg/L). The nano-sorbents were characterized based on SEM structure, elemental composition (EDX), surface area analysis (BET), crystallinity (XRD), and functional group analysis (FTIR). The highest adsorption capacity of 8.44 mg/g with removal efficiency of 84% was attained at pH 8, 0.5 g dosage, contact time of 180 min, and 50 mg/L initial concentration. The experimental data fit best with the pseudo-second-order kinetic model with R2 of 0.998, while the Freundlich adsorption isotherm describes the adsorption process with an R2 value of 0.9464. A regeneration efficiency of 47% was attained even after five cycles of reusability studies. This efficiency implies that the nano-magnetite has the potential for sustainable industrial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.