Neural network potentials are emerging as promising classical force fields that can enable long-time and large-length scale simulations at close to ab initio accuracies. They learn the underlying potential energy surface by mapping the Cartesian coordinates of atoms to system energies using elemental neural networks. To ensure invariance with respect to system translation, rotation, and atom index permutations, in the Behler−Parrinnello type of neural network potential (BP-NNP), the Cartesian coordinates of atoms are transformed into "structural fingerprints" using atom-centered symmetry functions (ACSFs). Development of an accurate BP-NNP for any chemical system critically relies on the choice of these ACSFs. In this work, we have proposed a systematic framework for the identification of an optimal set of ACSFs for any target system, which not only considers the diverse atomic environments present in the training dataset but also inter-ACSF correlations. Our method is applicable to different kinds of ACSFs and across diverse chemical systems. We demonstrate this by building accurate BP-NNPs for water and Cu 2 S systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.