Calcium sulfate (CaSO4) scale has been identified as one of the most common scales contributing to several serious operating problems in oil and gas wells and water injectors. Removing this scale is considered an economically feasible process in most cases as it enhances the productivity of wells and prevents potential severe equipment damage. In this study, a single-step method utilizing potassium carbonate and tetrapotassium ethylenediaminetetraacetate (K4-EDTA) at high temperature (200 °F) has been used to remove CaSO4 scale. The CaSO4 scale was converted to calcium carbonate (CaCO3) and potassium sulfate (K2SO4) using a conversion agent, potassium carbonate (K2CO3), at a high temperature (200 °F) and under various pH conditions. Various parameters were investigated to obtain a dissolver composition at which the optimum dissolution efficiency is achieved including the effect of dissolver pH, soaking time, the concentration of K4-EDTA, the concentration of potassium carbonate (K2CO3), temperature impact and agitation effect. Fourier transform infrared, X-ray crystallography, ion chromatography, stability tests and corrosion tests were carried out to test the end product of the process and showcase the stability of the dissolver at high temperature conditions. A reaction product (K2SO4) was obtained in most of the tests with different quantities and was soluble in both water and HCl. It was observed that the dissolver solution was effective at low pH (7) and resulted in a negligible amount of reaction product with 3 wt% CaSO4 dissolution. The 10.5-pH dissolver was effective in most of the cases and provided highest dissolution efficiency. The reaction product has been characterized and showed it is not corrosive. Both 7-pH and 10.5-pH dissolvers showed high stability at high temperature and minimum corrosion rates. The single step dissolution process showed its effectiveness and could potentially save significant pumping time if implemented in operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.