A novel heterogeneous catalyst composite (CuS-FeS/SiO2) derived from rice husk silica was engineered following pyrolysis, chemical precipitation, and chemical redox technique. The resulting catalyst was applied to the conversion of palm fatty acid distillate to biodiesel. The presence of CuS and FeS on the catalyst was verified using X-ray diffraction and Fourier transform infrared spectroscopy, nitrogen physisorption, scanning electron microscopy (FESEM) with energy dispersive X-ray (EDS) spectroscopy, and temperature-programmed desorption of NH3 (TPD-NH3), inductively coupled plasma-atomic emission spectrometry (ICP-AES), and TGA; a specific surface area of approximately 40 m2·g−1 was identified. The impact of independent variables, i.e., reaction temperature, reaction duration, methanol:oil ratio and catalyst concentration were evaluated with respect to the efficacy of the esterification reaction. The greatest efficiency of 98% with a high productivity rate of 2639.92 µmol·g−1·min−1 with k of 4.03 × 10−6 mole·S−1 was achieved with the following parameters: temperature, 70 °C; duration, 180 min; catalyst loading, 2 wt.%; and methanol to oil ratio, 15:1. The CuS-FeS/SiO2 catalyst showed relatively high stability indicated by its ability to be reused up to five times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.