Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS‐FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP‐43) accumulation. While both TDP‐43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin‐associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP‐43 transgenic mice, FTLD‐TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP‐43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1‐mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1‐mitofilin complexes are significantly reduced in brains of FTLD‐TDP patients and TDP‐43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1‐mitofilin complex disassembly, while TDP‐43 overexpression also reduces CHCHD10, promotes OPA1‐mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10‐regulated OPA1‐mitofilin complex contributes to mitochondrial abnormalities in FTLD‐TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD‐TDP.
Mutations in CHCHD10, a gene coding for a mitochondrial intermembrane space protein, are associated with Frontotemporal dementia (FTD)-Amyotrophic lateral sclerosis (ALS) spectrum disorders, which are pathologically characterized by cytoplasmic inclusions containing TDP-43. FTD/ALS-linked CHCHD10 mutations and TDP-43 inclusions similarly induce mitochondrial defects in respiration, fusion/fission, mtDNA stability, and cristae structure, while sizeable amounts of cytoplasmic TDP-43 aggregates are found in mitochondria. However, the mechanistic link between CHCHD10 and TDP-43 pathogenesis remains unclear. In this study, we present immunohistochemical and biochemical evidence demonstrating that insoluble CHCHD10 aggregates accumulate and colocalize with phospho-TDP-43 inclusions in brains of FTLD-TDP and AD patients, and that insoluble CHCHD10 levels tightly correlate with insoluble TDP-43 levels in control and FTLD-TDP brains. In an experimental exploration of this pathological phenotype, transgenic mice neuronally expressing FTD/ALS-linked CHCHD10R15L or CHCHDS59L mutations but not CHCHD10WT transgenic mice exhibit significantly increased CHCHD10 aggregation and phospho-TDP-43 pathology, which often colocalize within the same inclusions. Such pathologies are reflected in poor functional outcomes in long-term synaptic plasticity, motor unit physiology, and behavior in CHCHD10R15L and CHCHDS59L transgenic mice. In contrast, expression of CHCHD10WT in hTDP-43 transgenic mice (TAR4;CHCHD10WT) significantly mitigates phospho-TDP-43 pathology and rescues TDP-43-induced impairments in synaptic integrity and long-term synaptic plasticity. In isolated mitochondria, the S59L mutation induces the aggregation of resident CHCHD10S59L protein as well as the aggregation and slower turnover of recombinant TDP-43 imported into mitochondria. Likewise, in an in vitro cell-free system, the S59L mutation induces the aggregation of CHCHD10S59L protein while simultaneously enhancing the aggregation of recombinant TDP-43, as evidenced by filter trap assays and atomic force microscopy. In contrast, recombinant CHCHD10WT inhibits the growth of TDP-43 aggregates. These results in human brains, transgenic mice, and in vitro systems substantiate the role of wild type and mutant CHCHD10 in modulating mitochondrial CHCHD10 and TDP-43 pathogenesis together with associated phenotypes in long-term synaptic plasticity and motor unit physiology in mice and humans.
Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson’s disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.
Amyloid β (Aβ) accumulation is an early event in the pathogenesis of Alzheimer’s disease (AD), leading to mitochondrial and synaptic dysfunction, tau accumulation, and eventual neuronal death. While the p53 apoptotic pathway has clearly been associated with Aβ deposits and neuronal apoptosis, the critical upstream factors contributing to p53 activation in AD are not well understood. We have previously shown that cofilin activation plays a pivotal role in Aβ-induced mitochondrial and synaptic dysfunction. In this study, we show that activated cofilin (S3A) preferentially forms a complex with p53 and promotes its mitochondrial and nuclear localization, resulting in transcription of p53-responsive genes and promotion of apoptosis. Conversely, reduction of endogenous cofilin by knockdown or genetic deficiency inhibits mitochondrial and nuclear translocation of p53 in cultured cells and in APP/PS1 mice. This cofilin-p53 pro-apoptotic pathway is subject to negative regulation by PLD1 thorough cofilin inactivation and inhibition of cofilin/p53 complex formation. Finally, activated cofilin is unable to induce apoptosis in cells genetically lacking p53. These findings taken together indicate that cofilin coopts and requires the nuclear and mitochondrial pro-apoptotic p53 program to induce and execute apoptosis, while PLD1 functions in a regulatory multi-brake capacity in this pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.