An efficient synthetic protocol was devised for the preparation of five cationic ruthenium−arene complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands from the [RuCl 2 (pcymene)] 2 dimer and 2 equiv of an NHC•CS 2 zwitterion. The reactions proceeded cleanly and swiftly in dichloromethane at room temperature to afford the expected [RuCl(p-cymene)(S 2 C•NHC)]Cl products in quantitative yields. When the [RuCl 2 (p-cymene)] 2 dimer was reacted with only 1 equiv of a dithiolate betaine under the same experimental conditions, a set of five bimetallic compounds with the generic formulawas obtained in quantitative yields. These novel, dual anionic and cationic ruthenium−arene complexes were fully characterized by various analytical techniques. NMR titrations showed that the chelation of the dithiocarboxylate ligands to afford [RuCl(pcymene)(S 2 C•NHC)] + cations was quantitative and irreversible. Conversely, the formation of the [RuCl 3 (p-cymene)] − anion was limited by an equilibrium, and this species readily dissociated into Cl − anions and the [RuCl 2 (p-cymene)] 2 dimer. The position of the equilibrium was strongly influenced by the nature of the solvent and was rather insensitive to the temperature. Two monometallic and two bimetallic complexes cocrystallized with water, and their molecular structures were solved by X-ray diffraction analysis. Crystallography revealed the existence of strong interactions between the azolium ring protons of the cationic complexes and neighboring donor groups from the anions or the solvent. The various compounds under investigation were highly soluble in water. They were all strongly cytotoxic against K562 cancer cells. Furthermore, with a selectivity index of 32.1, the [RuCl(pcymene)(S 2 C•SIDip)]Cl complex remarkably targeted the erythroleukemic cells vs mouse splenocytes.
The reaction of [RuCl2(p-cymene)]2 with potassium O-ethylxanthate and a set of nine representative Ph2P-X-PPh2 bidentate phosphines (dppm, dppe, dppp, dppb, dpppe, dppen, dppbz, dppf, and DPEphos) afforded monometallic [Ru(S2COEt)2(diphos)] chelates 1-9 in 62-96% yield. All the products were fully characterized by using various analytical techniques and their molecular structures were determined by X-ray crystallography. They featured a highly distorted octahedral geometry with a S-Ru-S bite angle close to 72° and P-Ru-P angles ranging between 73° and 103°. Bond lengths and IR stretching frequencies recorded for the anionic xanthate ligands strongly suggested a significant contribution of the EtO+[double bond, length as m-dash]CS22- resonance form. 1H NMR and XRD analyses showed that the methylene protons of the ethyl groups were diastereotopic due to a strong locking of their conformation by a neighboring phenyl ring. On cyclic voltammetry, quasi-reversible waves were observed for the Ru2+/Ru3+ redox couples with E1/2 values ranging between 0.65 and 0.80 V vs. Ag/AgCl. The activity of chelates 1-9 was probed in three catalytic processes, viz., the synthesis of vinyl esters from benzoic acid and 1-hexyne, the cyclopropanation of styrene with ethyl diazoacetate, and the atom transfer radical addition of carbon tetrachloride and methyl methacrylate. In the first case, 31P NMR analysis of the reaction mixtures showed that the starting complexes remained mostly unaltered despite the harsh thermal treatment that was applied to them. In the second case, monitoring the rate of nitrogen evolution revealed that all the catalysts under investigation behaved similarly and were rather slow initiators. In the third case, [Ru(S2COEt)2(dppm)] was singled out as a very active and selective catalyst already at 140 °C, whereas most of the other complexes resisted degradation up to 160 °C and were only moderately active. Altogether, these results were in line with the high stability displayed by [Ru(S2COEt)2(diphos)] chelates 1-9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.