In this study we measure the in situ response of a fiber Bragg grating (FBG) sensor embedded in the adhesive layer of a single composite lap joint, subjected to harmonic excitation after fatigue loading. After a fully reversed cyclic fatigue loading is applied to the composite lap joint, the full-spectral response of the sensor is interrogated at 100 kHz during two loading conditions: with and without an added harmonic excitation. The full-spectral information avoided dynamic measurement errors often experienced using conventional peak wavelength and edge filtering techniques. The short-time Fourier transform (STFT) is computed for the extracted peak wavelength information to reveal time-dependent frequencies and amplitudes of the dynamic FBG sensor response. The dynamic response of the FBG sensor indicated a transition to strong nonlinear dynamic behavior as fatigue-induced damage progressed. The ability to measure the dynamic response of the lap joint through sensors embedded in the adhesive layer can provide in situ monitoring of the lap joint condition.
In this paper, we simulate the response of fiber Bragg grating (FBG) sensors embedded in the adhesive layer of a composite lap that is subjected to harmonic excitation. To simulate accumulated fatigue damage at the adhesive layer, two forms of numerical nonlinearities are introduced into the model: (1) progressive plastic deformation of the adhesive and (2) changing the boundary of an interfacial defect at the adhesive layer across the overlap shear area. The simulation results are compared with previous measurements of the dynamic, full-spectral response of such FBG sensors for condition monitoring of the lap joint. Short-time Fourier transforms (STFT) of the locally extracted axial strain time histories reveal a transition to nonlinear behavior of the composite lap joint by means of intermittent frequencies that were observed in the experimental measurements and are not associated with the external excitation. The simulation results verify that the nonlinear changes in measured dynamic FBG responses are due to the progression of damage in the lap joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.