INTRODUCTION: An episode of prolonged exposure to high altitude can cause hypoxia and have significant health consequences. In people with a high-altitude disorder, the body reacts by producing a protein called hypoxia-inducible factor (HIF), which triggers a series of physiological
changes and serves a central role in the hypoxia response. Its activity is regulated by the oxygen-dependent degradation of the HIF-1α protein (HIF-1A gene). Therefore, the effects of low oxygen tension in high altitude were explored using fluorescent sensors of hypoxia.METHODS:
The development of the sensor provided more sensitivity for detecting hypoxia by generating a calibration of optimized parameters such as reagent concentrations, reagent volumes, and device dimensions.RESULTS: There is a high sensitivity and specificity in detecting the changes
of HIF-1α protein hypoxia using the feasibility hypoxia test. This would enable point-of-care (POC) testing and individual self-administration, resulting in faster and more accurate results that can be used for a robust diagnostic approach and enhanced health surveillance, particularly
in high-altitude exposure.Shaharuddin S, Rahman NMANA, Masarudin MJ, Alamassi MN, Saad FFA. HIF-1 sensor in detecting hypoxia tolerance at high altitude. Aerosp Med Hum Perform. 2023; 94(6):485–487.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.