Background: Radiotherapy (RT) is the chief nonsurgical method to control malignant tumors. RT has advanced in both methodological and biological aspects over the past few decades. Though RT is a momentous adjuvant noninvasive technique, it leaves behind some unsympathetic effects. Research is going on to surmount these pessimistic sides of RT. Methods: We made a mini review of recent articles from the period of 2000 to 2017 regarding radiotherapy and its side effects in various types of cancers. The literature review was done by searching in PUBMED, MEDLINE, and SCOPUS. Results: Here, we spotlight the physiological and genetic risks associated with the cancer patients undergoing RT. We illustrated the course of RT in most prevalent cancers tailored with dosage distribution. Radiation-induced mutation in the patients undergoing RT has been shown with evidence. Further, the major drawbacks like the development of radiation resistance in cancerous cells and secondary malignancies have been discussed. The problems associated with radiation dosage in terms of infertility and rejuvenation of reproductive cells has also been discussed. Finally, we discussed the latest treatment stratagem of RT in cancer. Conclusion: Cancer treatment will not be accomplished devoid of radiotherapy. But we can brace RT using radiosensitizers and ayurvedic radioprotectors.
Recent advances in induced pluripotent stem cell (iPSC) technology target screening and discovering of therapeutic agents for the possible cure of human diseases. Human induced pluripotent stem cells (hiPSC) are the right kind of platform for testing potency of specific active compounds. Ayurveda, the Indian traditional system of medicine developed between 2,500 and 500 BC, is a science involving the intelligent formulations of herbs and minerals. It can serve as a "goldmine" for novel neuroprotective agents used for centuries to treat neurological disorders. This review discusses limitations in screening drugs for neurological disorders and the advantages offered by hiPSC integrated with Indian traditional system of medicine. We begin by describing the current state of hiPSC technology in research on Rett syndrome (RTT) followed by the current controversies in RTT research combined with the emergence of patient-specific hiPSC that indicate an urgent need for researchers to understand the etiology and drug mechanism. We conclude by offering recommendations to reinforce the screening of active compounds present in the ayurvedic medicines using the human induced pluripotent neural model system for research involving drug discovery for RTT. This integrative approach will fill the current knowledge gap in the traditional medicines and drug discovery.
Human induced pluripotent stem cells (hiPSCs) are pluripotent stem cells generated from somatic cells by the introduction of a combination of pluripotency-associated genes such as OCT4, SOX2, along with either KLF4 and c-MYC or NANOG and LIN28 via retroviral or lentiviral vectors. Most importantly, hiPSCs are similar to human embryonic stem cells (hESCs) functionally as they are pluripotent and can potentially differentiate into any desired cell type when provided with the appropriate cues, but do not have the ethical issues surrounding hESCs. For these reasons, hiPSCs have huge potential in translational medicine such as disease modeling, drug screening, and cellular therapy. Indeed, patient-specific hiPSCs have been generated for a multitude of diseases, including many with a neurological basis, in which disease phenotypes have been recapitulated in vitro and proof-of-principle drug screening has been performed.As the techniques for generating hiPSCs are refined and these cells become a more widely used tool for understanding brain development, the insights they produce must be understood in the context of the greater complexity of the human genome and the human brain. Disease models using iPS from Rett syndrome (RTT) patient's fibroblasts have opened up a new avenue of drug discovery for therapeutic treatment of RTT. The analysis of X chromosome inactivation (XCI) upon differentiation of RTT-hiPSCs into neurons will be critical to conclusively demonstrate the isolation of pre-XCI RTT-hiPSCs in comparison to post-XCI RTThiPSCs. The current review projects on iPSC studies in RTT as well as XCI in hiPSC were it suggests for screening new potential therapeutic targets for RTT in future for the benefit of RTT patients. In conclusion, patient-specific drug screening might be feasible and would be particularly helpful in disorders where patients frequently have to try multiple drugs before finding a regimen that works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.