Effective prevention of HIV/AIDS requires early diagnosis, initiation of therapy, and regular plasma viral load monitoring of the infected individual. In addition, incidence estimation using accurate and sensitive assays is needed to facilitate HIV prevention efforts in the public health setting. Therefore, more affordable and accessible point-of-care (POC) technologies capable of providing early diagnosis, HIV viral load measurements, and CD4 counts in settings where HIV is most prevalent are needed to enable appropriate intervention strategies and ultimately stop transmission of the virus within these populations to achieve the future goal of an AIDS-free generation. This review discusses the available and emerging POC technologies for future application to these unmet public health needs.
The remarkable stability of peptide nucleic acids (PNAs) toward enzymatic degradation makes this class of molecules ideal to develop as part of a diagnostic device. Here we report the development of chemically-engineered PNAs for the quantitative detection of HIV RNA at clinically relevant levels that are competitive with current PCR-based assays. Using a sandwich hybridization approach, chemical groups were systematically introduced into a surface PNA probe and a reporter PNA probe to achieve quantitative detection for HIV RNA as low as 20 copies per milliliter of plasma. For the surface PNA probe, four cyclopentane groups were incorporated to promote stronger binding to the target HIV RNA compared to PNA without the cyclopentanes. For the reporter PNA probe, 25 biotin groups were attached to promote strong signal amplification after binding to the target HIV RNA. These general approaches to engineer PNA probes may be used to detect other RNA target sequences.
BackgroundXMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC) patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS). Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors.MethodsTo study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma) cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR.ResultsInfection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP.ConclusionXMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.
The use of high concentrations of biotin as a dietary supplement to improve hair, skin, and nail quality has increased in the United States over the past few years. High concentrations of biotin have been shown to interfere with some diagnostic assays that use streptavidin-biotin interactions as one of the steps in the assay. The objective of this report is to evaluate potential biotin interference on the analytical and clinical sensitivity of a point of care (POC) antigen-antibody combo HIV-1 assay. We spiked biotin at concentrations ranging from 12.5 to 400 ng/mL into serum and plasma containing HIV-1 subtype B p24 antigen derived from culture supernatant. The p24 antigen was present in the matrices at 30 pg/mL. Fifty microliters of each sample was applied to Alere Determine HIV-1/2 Ag/Ab combo assay strips in duplicate and results were read by eye after 20 to 30 min. Biotin interfered with detection of HIV-1 p24 in serum and plasma. HIV-1 p24 was not detected at 30 pg/mL p24 when biotin was present at 200 ng/mL concentration. Our study demonstrated that elevated levels of biotin in samples may interfere with POC assays. It is important to consider biotin supplements as potential sources of falsely increased or decreased test results, especially in cases wherein supplementation cannot be ruled out.
BackgroundPreliminary studies in chronic fatigue syndrome (CFS) patients and XMRV infected animals demonstrated plasma viremia and infection of blood cells with XMRV, indicating the potential risk for transfusion transmission. XMRV and MLV-related virus gene sequences have also been detected in 4–6% of healthy individuals including blood donors in the U.S. These results imply that millions of persons in the U.S. may be carrying the nucleic acid sequences of XMRV and/or MLV-related viruses, which is a serious public health and blood safety concern.Methodology/Principal FindingsTo gain evidence of XMRV or MLV-related virus infection in the U.S. blood donors, 110 plasma samples and 71 PBMC samples from blood donors at the NIH blood bank were screened for XMRV and MLV-related virus infection. We employed highly sensitive assays, including nested PCR and real-time PCR, as well as co-culture of plasma with highly sensitive indicator DERSE cells. Using these assays, none of the samples were positive for XMRV or MLV-related virus.Conclusions/SignificanceOur results are consistent with those from several other studies, and demonstrate the absence of XMRV or MLV-related viruses in the U.S. blood donors that we studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.