Plants with defects in the synthesis of their epicuticular wax layer, eceriferum mutants (cer), are readily detected by the naked eye as bright green glossy plants when compared with the more glaucous normal plants. In a previous report, evidence was presented for the isolation of three lines from the Arabidopsis thaliana transformant collection (BRL5, BRL7 and BRL9) which failed to complement the cer2 mutant isolated previously. The analysis of the chemical composition of the epicuticular wax of these mutants suggests that the cer2 mutant of Arabidopsis is defective in very long chain fatty acid elongation. This paper reports the molecular cloning of the CER2 gene of Arabidopsis through the isolation of plant DNA flanking the site of T-DNA insertion as well as the characterization of the two independent T-DNA insertion mutant alleles, BRL5 and BRL9, of this gene. In the mutant line BRL5, T-DNA was found to be inserted in the second exon of the CER2 gene whereas in BRL9, T-DNA is inserted in the only intron of this gene. Nucleotide sequence analysis suggests that the ORF encodes a 47.3 kDa polypeptide. High levels of CER2 transcripts were detected in stems and flowers. The predicted amino acid sequence of the CER2 gene product reveals little homology with known protein sequences. In accordance with structural characterization of the T-DNA insertion mutants, no evidence of transcripts derived from the CER2 gene was found in either BRL5 or BRL9.
SummaryThe mechanisms mediating responses to glycine withdrawal in budding yeast were studied using a genome-wide profiling approach. A striking pattern of repressed expression of genes with an enrichment for those involved in one-carbon metabolism and AMP biosynthesis was revealed. Sequence analysis of the promoters for the most severely repressed genes identified a conserved sequence, TGACTC, a known binding site for the transcription factors Gcn4p and Bas1p. Loss of BAS1 abolished or significantly reduced the repression of these genes in response to glycine removal but this phenotype was much less apparent in the absence of BAS2 or GCN4 . Addition of a Bas1p-LexA fusion protein to a strain with a LexAop-LacZ fusion showed a strong glycine effect both in a BAS2 and a bas2 background. A Bas1p-VP16 fusion protein activated expression in a bas1bas2 strain but no glycine effect was observed while a Bas1p-Bas2p fusion protein activated expression to a lesser extent with a slight stimulation by glycine. These results suggest that glycine affects Bas1p activation of transcription rather than DNA binding and that Bas2p is not required for this affect. Glycine withdrawal repressed many of the same genes as addition of adenine, a process known to be dependent on Bas1p. However, the glycine response is independent of adenine repression, because glycine regulation occurs normally in ade strains. We did not see any difference in the degree of stimulation by glycine in the presence or absence of adenine even in Ade + strains. Glycine regulation was also found to be dependent on an intact SHM2 gene, which encodes cytoplasmic serine hydroxymethyltransferase. A reporter plasmid containing a DNA sequence from the GCV2 promoter which confers glycine regulation on heterologous genes was introduced into the yeast deletion set to screen for genes required for glycine regulation. A number of genes, including BAS1 were required for activation by glycine but only the SHM2 gene was required for repression in the absence of glycine. We also showed that regulation of the SHM2 promoter by glycine requires Bas1p but not Bas2p or Gcn4p using a b b b b -galactosidase reporter. The response of the promoter to glycine required an intact SHM2 gene but was restored in a shm2 strain by addition of formate to the medium.
Lactic acid is an intermediate-volume specialty chemical for a wide range of food and industrial applications such as pharmaceuticals, cosmetics and chemical syntheses. Although lactic acid production has been well documented, improved production parameters that lead to reduced production costs are always of interest in industrial developments. In this study, we describe the production of lactic acid at high concentration, yield and volumetric productivity utilizing a novel homofermentative, facultative anaerobe Enterococcus faecalis CBRD01. The highest concentration of 182 g lactic acid l−1 was achieved after 38 h of fed-batch fermentation on glucose. The bacterial isolate utilized only 2–13% of carbon for its growth and energy metabolism, while 87–98% of carbon was converted to lactic acid at an overall volumetric productivity of 5 g l−1 h−1. At 13 h of fermentation, the volumetric productivity of lactate production reached 10.3 g l−1 h−1, which is the highest ever reported for microbial production of lactic acid. The lactic acid produced was of high purity as formation of other metabolites was less than 0.1%. The present investigation demonstrates a new opportunity for enhanced production of lactic acid with potential for reduced purification costs.
a b s t r a c tRationale: Benzimidazoles and its derivatives represent one of the mainly biological active classes of literature. Aim: In this present study aimed to synthesize N-mannich bases derivatives compounds bearing of 2-substituted benzimidazole moiety, in order to investigate their possible biological activity. Method: Benzimidazole compounds were prepared from the condensation reaction between ortho phenylene diamine and various acids. Mannich base of newly synthesized Benzimidazole derivatives were synthesized from 2-substituted Benzimidazoles by reacting with secondary amines. The purity of the compounds was ascertained by melting point (m.p) and thin layer chromatography (TLC). Structures of the synthesized compounds were elucidated by spectral data. Antimicrobial assay was performed by microbroth dilution method. Bacterial genomic DNA cleavage was assessed by Agarose gel electrophoresis. Toxicity of the most effective compounds was studied by Brine-shrimp lethality assay. Result: Among the synthesized compounds, compound 5E (a) and (b) was establish to be the most potent against all tested microorganisms. This two compounds exhibited complete bacterial DNA cleavage and non-toxic. Conclusion: These results suggest that it an interesting compound compared to the current therapeutic agents and are considered to investigate further for the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.