This review summarize the available data on cytochrome P450 - related drug-drug interactions reported in the literature for the eight ARBs. Knowledge of the pharmacokinetic properties of the ARBs should allow the avoidance of the majority of drug interactions without compromising therapeutic benefits.
Metabolic study of bioactive compounds that undergo a dynamic and sequential process of metabolism is still a great challenge. Salidroside, one of the most active ingredients of Rhodiola crenulata, can be metabolized in different sites before being absorbed into the systemic blood stream. This study proposed an approach for describing the sequential biotransformation process of salidroside based on comparative analysis. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to determine the relative contribution of each site to the total metabolism of salidroside. The results showed that salidroside was stable in digestive juice, and it was metabolized primarily by the liver and the intestinal flora and to a lesser extent by the gut wall. The sequential metabolism method described in this study could be a general approach to characterizing the metabolic routes in the digestive system for natural products.
Buddleja officinalis Maxim, one of the most popular herbal medicines in China, is widely prescribed for curing eye diseases for centuries. In this study, the major components of B. officinalis extract (BOE) and their metabolites in rat urine were detected and identified by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap). A total of 19 compounds, including 8 flavonoids and 11 phenylethanoid glycosides, were confirmed or tentatively identified from BOE. In vivo, 33 components, including 3 prototypes and 30 metabolies, were confirmed or tentatively identified in rat urine samples. The metabolic pathways of different types of compounds were also proposed. This study would effectively narrow the range of potentially bioactive constituents of BOE and shed light to its action mechanism.
In terms of the shortcomings of defect detection based on the electroluminescence of conventional silicon solar panels, which can only be performed under darkroom conditions, a defect detection system that can work under the Sun with any irradiance in all weather is designed. The system electrifies solar panels through a modulated current source, uses high frame rate InGaAs area array detectors for image data acquisition, and transmits images via CameraLink. Using these image data as data sources, a defect display algorithm model is designed. Through experiments, it can effectively collect the defect information of solar panels within the range of 0.2 to
1300
W
/
m
2
of sunlight irradiance. Based on this, according to the relationship of the modulated phase difference between the defective points and the nondefective points found in the experiment, an enhancing algorithm for image saliency is proposed. The results show that this algorithm can reduce background interference in an effective way and improve the contrast of defects displayed under high irradiance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.