In this paper, we construct a new Lagrangian discrete distribution, named the Lagrangian zero truncated Poisson distribution (LZTPD). It can be presented as a generalization of the zero truncated Poissson distribution (ZTPD) and an alternative to the intervened Poisson distribution (IPD), which was elaborated for modelling both over-dispersed and under-dispersed count datasets. The mathematical aspects of the LZTPD are thoroughly investigated, and its connection to other discrete distributions is crucially observed. Further, we define a finite mixture of LZTPDs and establish its identifiability condition along with some distributional aspects. Statistical work is then performed. The maximum likelihood and method of moment approaches are used to estimate the unknown parameters of the LZTPD. Simulation studies are also undertaken as an assessment of the long-term performance of the estimates. The significance of one additional parameter in the LZTPD is tested using a generalized likelihood ratio test. Moreover, we propose a new count regression model named the Lagrangian zero truncated Poisson regression model (LZTPRM) and its parameters are estimated by the maximum likelihood estimation method. Two real-world datasets are considered to demonstrate the LZTPD’s real-world applicability, and healthcare data are analyzed to demonstrate the LZTPRM’s superiority.
In this article, the Lagrange expansion of the second kind is used to generate a novel zero-truncated Katz distribution; we refer to it as the Lagrangian zero-truncated Katz distribution (LZTKD). Notably, the zero-truncated Katz distribution is a special case of this distribution. Along with the closed form expression of all its statistical characteristics, the LZTKD is proven to provide an adequate model for both underdispersed and overdispersed zero-truncated count datasets. Specifically, we show that the associated hazard rate function has increasing, decreasing, bathtub, or upside-down bathtub shapes. Moreover, we demonstrate that the LZTKD belongs to the Lagrangian distribution of the first kind. Then, applications of the LZTKD in statistical scenarios are explored. The unknown parameters are estimated using the well-reputed method of the maximum likelihood. In addition, the generalized likelihood ratio test procedure is applied to test the significance of the additional parameter. In order to evaluate the performance of the maximum likelihood estimates, simulation studies are also conducted. The use of real-life datasets further highlights the relevance and applicability of the proposed model.
The importance of Lagrangian distributions and their applicability in real-world events have been highlighted in several studies. In light of this, we create a new zero-truncated Lagrangian distribution. It is presented as a generalization of the zero-truncated binomial distribution (ZTBD) and hence named the Lagrangian zero-truncated binomial distribution (LZTBD). The moments, probability generating function, factorial moments, as well as skewness and kurtosis measures of the LZTBD are discussed. We also show that the new model’s finite mixture is identifiable. The unknown parameters of the LZTBD are estimated using the maximum likelihood method. A broad simulation study is executed as an evaluation of the well-established performance of the maximum likelihood estimates. The likelihood ratio test is used to assess the effectiveness of the third parameter in the new model. Six COVID-19 datasets are used to demonstrate the LZTBD’s applicability, and we conclude that the LZTBD is very competitive on the fitting objective.
The zero-truncated Poisson distribution (ZTPD) generates a statistical model that could be appropriate when observations begin once at least one event occurs. The intervened Poisson distribution (IPD) is a substitute for the ZTPD, in which some intervention processes may change the mean of the rare events. These two zero-truncated distributions exhibit underdispersion (i.e., their variance is less than their mean). In this research, we offer an alternative solution for dealing with intervention problems by proposing a generalization of the IPD by a Lagrangian approach called the Lagrangian intervened Poisson distribution (LIPD), which in fact generalizes both the ZTPD and the IPD. As a notable feature, it has the ability to analyze both overdispersed and underdispersed datasets. In addition, the LIPD has a closed-form expression of all of its statistical characteristics, as well as an increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function. A consequent part is devoted to its statistical application. The maximum likelihood estimation method is considered, and the effectiveness of the estimates is demonstrated through a simulated study. To evaluate the significance of the new parameter in the LIPD, a generalized likelihood ratio test is performed. Subsequently, we present a new count regression model that is suitable for both overdispersed and underdispersed datasets using the mean-parametrized form of the LIPD. Additionally, the LIPD’s relevance and application are shown using real-world datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.