Dispersal, one of the major factors affecting the gene flow between populations, shapes the spatial distribution of genetic diversity within species. Alouatta macconnelli and Saguinus midas are two Neotropical monkey species that sympatrically inhabit the Guiana shield in northern Amazonia and are likely to differ in their dispersal behavior and vagility. We took advantage of their sympatry to investigate, over a fine geographical scale (∼50 km long), the relationship between spatial genetic structure, on the one hand, and geographical features and the species' dispersal behavior on the other. A total of 84 A. macconnelli individuals from 25 social units and 76 S. midas individuals from 19 social units were genotyped for nine microsatellite markers. Both species displayed high genetic diversity and allelic richness. However, patterns of genetic structure differed between the two species. In A. macconnelli, no genetic substructuring was observed, while in S. midas we detected significant structuring, but this structuring was not correlated with geographical features, such as the location of individuals relative to the river and/or the distance between them. Instead, the geographical distribution of genetic variation observed for each species is predominantly explained by each species' dispersal pattern. We identified bisexual dispersal for both species, but with significant differences, either in the distance or in the rate of dispersal, between species and sexes. Genetic relatedness within social units was higher in S. midas than in A. macconnelli: gene flow between social units seems limited in S. midas, especially for females, while high dispersal characterizes A. macconnelli, where females seem to disperse at lower rate but at a longer distance than males.
Population genetics and phenotypic structures are often predicted to vary along the geographic range of a species. This phenomenon would be accentuated for species with large range areas, with discontinuities and marginal populations. We herein compare the genetic patterns of central populations of Coccinella septempunctata L. with those of two phenotypically differentiated populations considered as rear‐edge populations and subspecies based on phenotype (Algeria and Japan). According to the central‐marginal model and expected characteristics of rear‐edge populations, we hypothesize that these rear‐edge populations have (1) a reduced genetic diversity, resulting from their relative isolation over long periods of time, (2) a higher population genetic differentiation, explained by low contemporary gene flow levels, and (3) a relationship between genetic diversity characteristics and phenotypes, due to historical isolation and/or local adaptation. Based on genotyping of 28 populations for 18 microsatellite markers, several levels of regional genetic diversity and differentiation are observed between and within populations, according to their localization: low within‐population genetic diversity and higher genetic differentiation of rear‐edge populations. The genetic structuring clearly dissociates the Algerian and Eastern Asia populations from the others. Geographical patterns of genetic diversity and differentiation support the hypothesis of the central‐marginal model. The pattern observed is in agreement with the phenotypic structure across species range. A clear genetic break between populations of Algeria, the Eastern Asia, and the remaining populations is a dominant feature of the data. Differential local adaptations, absence of gene flow between marginal and central populations, and/or incapacity to mate after colonization, have contributed to their distinct genotypic and phenotypic characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.