Data security, privacy and authenticity are crucial in wireless data transmission. Low power consumption is the main requirement for any chip design targeting the Internet of Things (IoT) applications. In this research paper, a comparative study of eight authenticated encryption and decryption algorithms, selected from the “Competition for Authenticated Encryption: Security, Applicability and Robustness” (CAESAR), namely, ACORN, ASCON, CLOC, JOLTIK, MORUS, PRIMATEs, SCREAM and SILC, is presented. The FPGA and ASIC implementations of these eight algorithms are synthesized, placed and routed. Power, area, latency and throughput are measured for all algorithms. All results are analyzed to determine the most suitable algorithm for IoT applications. These results show that ACORN algorithm exhibits the lowest power consumption of the eight studied at the expense of lower throughput and higher latency. MORUS algorithm gives the highest throughput among the eight selected algorithms at the expense of large area utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.