Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques 1,2 , but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells 3,4 , and magnetic resonance force microscopy 5 has succeeded in detecting single electrons 6 and small nuclear spin ensembles 7 . However, this technique currently requires cryogenic temperatures, which limit most potential biological applications 8 . Alternatively, single-electron spin states can be detected optically 9,10 , even at room temperature in some systems [11][12][13][14] . Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.The nitrogen-vacancy centre in diamond is a unique solid state system that allows ultrasensitive and rapid detection of single electronic spin states under ambient conditions 12 . The nitrogen-vacancy defect is a naturally occurring impurity that is responsible for the pink colouration of diamond crystals when present in high concentration. It was demonstrated that this colour centre can be produced in diamond nanocrystals by electron irradiation. Fluorescing nitrogen-vacancy diamond nanocrystals can be used as markers for bioimaging applications 15 . Such markers have attracted widespread interest because of their unprecedented photostability and non-toxicity 16,17 . It was recognized recently that the magnetic properties of such fluorescent labels can in principle be used for novel microscopy 18,19 . Here we demonstrate the realization of a magneto-optic microscope using nitrogen-vacancy diamond as the magnetic fluorescent label that moreover does not bleach or blink. Figure 1c and d show the fluorescenc...
We investigate the stationary bipartite entanglement in a useful hybrid optomechanical system, which is constituted of two coupled cavity optomechanics through a photon hopping process and both are driven by squeezed coherent light. The transfer of correlations from an entangled light source to optomechanical cavities is explored. It is found that the generation of bipartite entanglement and entanglement transfer depend strongly on photon hopping strength and the matching of the input squeezed modes to the cavity modes. It is revealed that the generated stationary bipartite entanglement due to squeezed light that drives the cavities is robust against the thermal fluctuations. The fidelity of coherent state of the optical modes is explored and it is shown that it offered interesting conditions on the stability of the system, which are the same for entanglement.
We consider a simple cavity optomechanics and study the ground-state cooling of mechanical resonator in the quantum regime. Using the effective master equations in the linear regime, the equations of motion can be obtained for the second order moments. The steady state solutions are derived in the case where the antiresonant terms are ignored. The final mean value of phonon number is compared the case where the antiresonant terms are included. We find that the groundstate cooling in the last case is improved. Indeed, the inclusion of the antiresonant terms makes the system able to generate a squeezed field, which is required for enhancing cooling. The variances of the resultant field are presented. Analytic calculations are presented in some appropriate regimes. Then our analytic predictions are confirmed with numerical calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.