of the Thesis viiLarge-scale optimization problems abound in data mining and machine learning applications, and the computational challenges they pose are often addressed through parallelization. We identify structural properties under which a convex optimization problem can be massively parallelized via map-reduce operations using the Frank-Wolfe (FW) algorithm. The class of problems that can be tackled this way is quite broad and includes experimental design, AdaBoost, and projection to a convex hull. Implementing FW via map-reduce eases parallelization and deployment via commercial distributed computing frameworks. We demonstrate this by implementing FW over Spark, an engine for parallel data processing, and establish that parallelization through map-reduce yields significant performance improvements: we solve problems with 20 million variables using 350 cores in 79 minutes; the same operation takes 165 hours when executed serially.vii Chapter 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.