For a long time ethylene-propylene rubber (EPR) copolymers with high comonomer contents were believed to be amorphous materials with a random copolymer composition. This is not completely correct as has been shown by temperature rising elution fractionation (TREF) combined with differential scanning calorimetry (DSC), crystallization analysis fractionation (CRYSTAF), and high temperature-highperformance liquid chromatography (HT-HPLC). When using only conventional crystallization-based fractionation methods, the comprehensive compositional analysis of EPR copolymers was impossible due to the fact that large fractions of these copolymers do not crystallize under CRYSTAF conditions. In the present work, HT-HPLC was used for the separation of the EPR copolymers according to their ethylene and propylene distributions along the polymer chains. These investigations showed the existence of long ethylene sequences in the bulk samples which was further confirmed by DSC. The results on the bulk samples prompted us to conduct preparative fractionations of EPR copolymers having varying ethylene contents using TREF. Surprisingly, significant amounts of crystallizing materials were obtained that were analyzed using a multistep protocol. CRYSTAF and DSC analyses of the TREF fractions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.