A processing map plays a major role in indicating safe and failure regions of a process conducted in a hot working regime. It also shows the response of a material, by indicating changes in the microstructural evolution through temperature. In the present study, a processing map has been developed depending on the flow stress data of Ti-6Al-4V alloy sheet in a strain rate range of 10−2 /s to 10−4 /s and over a temperature range of 700°C to 900°C in order to identify the presence of superplasticity region. The flow stress data have been acquired on the basis of temperature, strain and strain rate by conducting hot uniaxial tensile tests. Based on this, a power dissipation map is obtained to show the percentage of efficiency, as it is directly related to the amount of internal entropy produced. In addition, an instability map is also obtained, as it identifies the flow instability that are to be avoided during hot working process. Finally, a processing map has been established by overlaying instability map on efficiency map. The results clearly reveal that the superplastic deformation occurs within a temperature range of 750°C to 900°C at a strain rate of 10−4 /s, without any flow instability in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.