This paper aims to provide insights into the factors contributing to the efficiency of separation of solids particles in pneumatic jigging. A batch pneumatic jig was constructed at the University of Nottingham, UK, for solid waste recycling. Synthetic materials (density tracers), colour coded for density, were used as the bed materials in a series of experiments. The bed was analysed layer by layer using image analysis technique, utilizing colour difference among density tracers to calculate separation efficiency. In general, the pneumatic jigging movement depends on two important factors which are airflow rate and pulse rate. The former lifts the bed, and the latter creates intermittent air current. Airflow rate, pulse rate and time were studied to identify the significant parameters affecting separation efficiency in pneumatic jigging. Any changes in one of these parameters could influence separation efficiency. Process optimization was performed using Box-Behnken design to determine optimal conditions for obtaining high percentage of separation yield. Results from the software (Design-Expert ® 7.1) suggested that optimal conditions could be attained at a pulse rate of 120 rotations per minute, time of 7 min and airflow rate of 30 cm/s, with the produced yield expected at 82.4%. Actual experiments generated a separation efficiency of greater than 80% by varying the tested parameters.
The aim of this research was to characterize and analyze the formulation of emulsified modification bitumen (EMB) as well as the industrial wastes used in the formulation. Bitumen being a non-renewable product with severe environmental issues arising lately led to the use of industrial wastes such as plastic and recycled base oil in this research. Physical characteristic studies were performed to analyze the decomposition temperature, boiling point, flash point, density, moisture content, element content in waste plastics, and flowability of bitumen emulsion. Eight ratios of modified bitumen were formulated and compared with the industrial grade bitumen. The modified bitumen with a penetration value of 103 mm and softening value at 49 °C was chosen for the emulsification process where three emulsifiers were added into the mixture of bitumen and water. These samples were compared with the industrial bitumen emulsion. From the analysis, the formulated emulsion was obtained from a mixture consists of 20% bitumen, 7% polymer, and 73% recycled base oil.
The influence of reaction pressure, reaction time, reaction temperature, and biomass‐to‐water mass ratio R on the conversion of miscanthus biomass to biofuels under sub‐ and supercritical water (SCW) conditions was investigated. The highest total conversion was obtained under SCW conditions and the heating value increased under subcritical and SCW conditions. The findings herein show that near‐supercritical and supercritical water at 400 °C and high pressure can be an effective reaction medium for converting biomass to oils with relatively low oxygen contents in high yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.